Eigenvectors and Eigenvalues

Definition

Let A be an $n \times n$ matrix.

1. An eigenvector of A is a nonzero vector v in \mathbf{R}^{n} such that $A v=\lambda v$, for some λ in \mathbf{R}.
2. An eigenvalue of A is a number λ in \mathbf{R} such that the equation $A v=\lambda v$ has a nontrivial solution.
3. If λ is an eigenvalue of A, the λ-eigenspace is the solution set of $\left(A-\lambda I_{n}\right) x=0$.

Eigenspaces

Eigenvectors, geometrically
An eigenvector of a matrix A is a nonzero vector v such that:

- $A v$ is a multiple of v, which means
- Av is collinear with v, which means
- $A v$ and v are on the same line through the origin.

v is an eigenvector
w is not an eigenvector

Eigenspaces

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be reflection over the line L defined by $y=-x$, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A ? No computations!

Does anyone see any eigenvectors (vectors that don't move off their line)?
v is an eigenvector with eigenvalue -1 .

Eigenspaces

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be reflection over the line L defined by $y=-x$, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A ? No computations!

Does anyone see any eigenvectors (vectors that don't move off their line)?
w is an eigenvector with eigenvalue 1 .

Eigenspaces

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be reflection over the line L defined by $y=-x$, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A ? No computations!

Does anyone see any eigenvectors (vectors that don't move off their line)?
u is not an eigenvector.

Eigenspaces

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be reflection over the line L defined by $y=-x$, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A ? No computations!

Does anyone see any eigenvectors (vectors that don't move off their line)?

Neither is z.

Eigenspaces

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be reflection over the line L defined by $y=-x$, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A ? No computations!

Does anyone see any eigenvectors (vectors that don't move off their line)?

The 1-eigenspace is L (all the vectors x where $A x=x$).

Eigenspaces

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be reflection over the line L defined by $y=-x$, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A ? No computations!

Does anyone see any eigenvectors (vectors that don't move off their line)?

The (-1)-eigenspace is the line $y=x$ (all the vectors x where $A x=-x$).

Eigenspaces

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the vertical projection onto the x-axis, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A ? No computations!

Does anyone see any eigenvectors (vectors that don't move off their line)?
v is an eigenvector with eigenvalue 0.

Eigenspaces

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the vertical projection onto the x-axis, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A ? No computations!

Does anyone see any eigenvectors (vectors that don't move off their line)?
w is an eigenvector with eigenvalue 1.

Eigenspaces

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the vertical projection onto the x-axis, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A ? No computations!

Does anyone see any eigenvectors (vectors that don't move off their line)?
u is not an eigenvector.

Eigenspaces

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the vertical projection onto the x-axis, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A ? No computations!

Does anyone see any eigenvectors (vectors that don't move off their line)?

Neither is z.

Eigenspaces

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the vertical projection onto the x-axis, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A ? No computations!

Does anyone see any eigenvectors (vectors that don't move off their line)?

The 1-eigenspace is the x-axis (all the vectors x where $A x=x$).

Eigenspaces

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the vertical projection onto the x-axis, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A ? No computations!

Does anyone see any eigenvectors (vectors that don't move off their line)?

The 0 -eigenspace is the y-axis (all the vectors x where $A x=0 x$).

Eigenspaces

Let

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),
$$

so $T(x)=A x$ is a shear in the x-direction.
Question: What are the eigenvalues and eigenspaces of A ? No computations!

Does anyone see any eigenvectors (vectors that don't move off their line)?
Vectors v above the x-axis are moved right but not up...
so they're not eigenvectors.
[interactive]

Eigenspaces

Let

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),
$$

so $T(x)=A x$ is a shear in the x-direction.
Question: What are the eigenvalues and eigenspaces of A ? No computations!

Does anyone see any eigenvectors (vectors that don't move off their line)?

Vectors w below the x-axis are moved left but not down...
so they're not eigenvectors
[interactive]

Eigenspaces

Let

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),
$$

so $T(x)=A x$ is a shear in the x-direction.
Question: What are the eigenvalues and eigenspaces of A ? No computations!

Does anyone see any eigenvectors (vectors that don't move off their line)?
u is an eigenvector with eigenvalue 1.

Eigenspaces

Let

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),
$$

so $T(x)=A x$ is a shear in the x-direction.
Question: What are the eigenvalues and eigenspaces of A ? No computations!

Does anyone see any eigenvectors (vectors that don't move off their line)?

The 1-eigenspace is the x-axis (all the vectors x where $A x=x$).
[interactive]

Eigenspaces

Let

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),
$$

so $T(x)=A x$ is a shear in the x-direction.
Question: What are the eigenvalues and eigenspaces of A ? No computations!

Does anyone see any eigenvectors (vectors that don't move off their line)?

There are no other eigenvectors.
[interactive]

Poll

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be counterclockwise rotation by 45°, and let A be the matrix for T.

Poll

Find an eigenvector of A without doing any computations.
A. Okay.
B. No way.

Answer: B. No way. There are no eigenvectors of A in \mathbf{R}^{2} !

Section 6.2

The Characteristic Polynomial

The Characteristic Polynomial

Let A be a square matrix.
λ is an eigenvalue of $A \Longleftrightarrow A x=\lambda x$ has a nontrivial solution
$\Longleftrightarrow(A-\lambda I) x=0$ has a nontrivial solution
$\Longleftrightarrow A-\lambda I$ is not invertible
$\Longleftrightarrow \operatorname{det}(A-\lambda I)=0$.
This gives us a way to compute the eigenvalues of A.

Definition

Let A be a square matrix. The characteristic polynomial of A is

$$
f(\lambda)=\operatorname{det}(A-\lambda I)
$$

The characteristic equation of A is the equation

$$
f(\lambda)=\operatorname{det}(A-\lambda I)=0
$$

Important

The eigenvalues of A are the roots of the characteristic polynomial $f(\lambda)=\operatorname{det}(A-\lambda I)$.

The Characteristic Polynomial

Example

Question: What are the eigenvalues of

$$
A=\left(\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right) ?
$$

Answer: First we find the characteristic polynomial:

$$
\begin{aligned}
f(\lambda) & =\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\left(\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right)-\left(\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right)\right]=\operatorname{det}\left(\begin{array}{cc}
5-\lambda & 2 \\
2 & 1-\lambda
\end{array}\right) \\
& =(5-\lambda)(1-\lambda)-2 \cdot 2 \\
& =\lambda^{2}-6 \lambda+1
\end{aligned}
$$

The eigenvalues are the roots of the characteristic polynomial, which we can find using the quadratic formula:

$$
\lambda=\frac{6 \pm \sqrt{36-4}}{2}=3 \pm 2 \sqrt{2}
$$

The Characteristic Polynomial

Example

Question: What is the characteristic polynomial of

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) ?
$$

Answer:

$$
\begin{aligned}
f(\lambda) & =\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right)=(a-\lambda)(d-\lambda)-b c \\
& =\lambda^{2}-(a+d) \lambda+(a d-b c)
\end{aligned}
$$

What do you notice about $f(\lambda)$?

- The constant term is $\operatorname{det}(A)$, which is zero if and only if $\lambda=0$ is a root.
- The linear term $-(a+d)$ is the negative of the sum of the diagonal entries of A.

Definition

The trace of a square matrix A is $\operatorname{Tr}(A)=$ sum of the diagonal entries of A.

Shortcut

The characteristic polynomial of a 2×2 matrix A is

$$
f(\lambda)=\lambda^{2}-\operatorname{Tr}(A) \lambda+\operatorname{det}(A)
$$

The Characteristic Polynomial

Example

Question: What are the eigenvalues of the rabbit population matrix

$$
A=\left(\begin{array}{ccc}
0 & 6 & 8 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0
\end{array}\right) ?
$$

Answer: First we find the characteristic polynomial:

$$
\begin{aligned}
f(\lambda) & =\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{ccc}
-\lambda & 6 & 8 \\
\frac{1}{2} & -\lambda & 0 \\
0 & \frac{1}{2} & -\lambda
\end{array}\right) \\
& =8\left(\frac{1}{4}-0 \cdot-\lambda\right)-\lambda\left(\lambda^{2}-6 \cdot \frac{1}{2}\right) \\
& =-\lambda^{3}+3 \lambda+2
\end{aligned}
$$

We know from before that one eigenvalue is $\lambda=2$: indeed, $f(2)=-8+6+2=0$. Doing polynomial long division, we get:

$$
\frac{-\lambda^{3}+3 \lambda+2}{\lambda-2}=-\lambda^{2}-2 \lambda-1=-(\lambda+1)^{2}
$$

Hence $\lambda=-1$ is also an eigenvalue.

Algebraic Multiplicity

Definition

The (algebraic) multiplicity of an eigenvalue λ is its multiplicity as a root of the characteristic polynomial.

This is not a very interesting notion yet. It will become interesting when we also define geometric multiplicity later.

Example

In the rabbit population matrix, $f(\lambda)=-(\lambda-2)(\lambda+1)^{2}$, so the algebraic multiplicity of the eigenvalue 2 is 1 , and the algebraic multiplicity of the eigenvalue -1 is 2 .

Example

In the matrix $\left(\begin{array}{ll}5 & 2 \\ 2 & 1\end{array}\right), f(\lambda)=(\lambda-(3-2 \sqrt{2}))(\lambda-(3+2 \sqrt{2}))$, so the algebraic multiplicity of $3+2 \sqrt{2}$ is 1 , and the algebraic multiplicity of $3-2 \sqrt{2}$ is 1 .

The Characteristic Polynomial Poll

Fact: If A is an $n \times n$ matrix, the characteristic polynomial

$$
f(\lambda)=\operatorname{det}(A-\lambda I)
$$

turns out to be a polynomial of degree n, and its roots are the eigenvalues of A :

$$
f(\lambda)=(-1)^{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+a_{n-2} \lambda^{n-2}+\cdots+a_{1} \lambda+a_{0}
$$

Poll
True or false:
Every $n \times n$ real matrix has at least one real eigenvalue.
A. True
B. False

False. For example, if A represents rotation counterclockwise by 90° in \mathbf{R}^{2}, then A has characteristic polynomial $\lambda^{2}+1$, which has no real roots.

Factoring the Characteristic Polynomial

It's easy to factor quadraic polynomials:

$$
x^{2}+b x+c=0 \Longrightarrow x=\frac{-b \pm \sqrt{b^{2}-4 c}}{2}
$$

It's less easy to factor cubics, quartics, and so on:

$$
\begin{aligned}
x^{3}+b x^{2}+c x+d & =0 \Longrightarrow x=? ? ? \\
x^{4}+b x^{3}+c x^{2}+d x+e & =0 \Longrightarrow x=? ? ?
\end{aligned}
$$

Read about factoring polynomials by hand in $\S 6.2$.

Summary

We did two different things today.
First we talked about the geometry of eigenvalues and eigenvectors:

- Eigenvectors are vectors v such that v and $A v$ are on the same line through the origin.
- You can pick out the eigenvectors geometrically if you have a picture of the associated transformation.

Then we talked about characteristic polynomials:

- We learned to find the eigenvalues of a matrix by computing the roots of the characteristic polynomial $p(\lambda)=\operatorname{det}(A-\lambda I)$.
- For a 2×2 matrix A, the characteristic polynomial is just

$$
p(\lambda)=\lambda^{2}-\operatorname{Tr}(A) \lambda+\operatorname{det}(A)
$$

- The algebraic multiplicity of an eigenvalue is its multiplicity as a root of the characteristic polynomial.

