Section 7.2

Orthogonal Complements

Orthogonal Complements

Definition

Let W be a subspace of \mathbf{R}^{n}. Its orthogonal complement is

$$
W_{\uparrow}^{\perp}=\left\{v \text { in } \mathbf{R}^{n} \mid v \cdot w=0 \text { for all } w \text { in } W\right\} \quad \text { read " } W \text { perp". }
$$

Pictures:
The orthogonal complement of a line in \mathbf{R}^{2} is the perpendicular line.

The orthogonal complement of a line in \mathbf{R}^{3} is the perpendicular plane.
[interactive]

The orthogonal complement of a plane in \mathbf{R}^{3} is the perpendicular line.

Poll

Let W be a 2-plane in \mathbf{R}^{4}. How would you describe W^{\perp} ?
A. The zero space $\{0\}$.
B. A line in \mathbf{R}^{4}.
C. A plane in \mathbf{R}^{4}.
D. A 3-dimensional space in \mathbf{R}^{4}.
E. All of \mathbf{R}^{4}.

For example, if W is the $x y$-plane, then W^{\perp} is the $z w$-plane:

$$
\left(\begin{array}{l}
x \\
y \\
0 \\
0
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
0 \\
z \\
w
\end{array}\right)=0
$$

Orthogonal Complements

Basic properties

Let W be a subspace of \mathbf{R}^{n}.

Facts:

1. W^{\perp} is also a subspace of \mathbf{R}^{n}
2. $\left(W^{\perp}\right)^{\perp}=W$
3. $\operatorname{dim} W+\operatorname{dim} W^{\perp}=n$
4. If $W=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, then

$$
\begin{aligned}
W^{\perp} & =\text { all vectors orthogonal to each } v_{1}, v_{2}, \ldots, v_{m} \\
& =\left\{x \text { in } \mathbf{R}^{n} \mid x \cdot v_{i}=0 \text { for all } i=1,2, \ldots, m\right\} \\
& =\mathrm{Nul}\left(\begin{array}{c}
-v_{1}^{T}- \\
-v_{2}^{T}- \\
\vdots \\
-v_{m}^{T}-
\end{array}\right) .
\end{aligned}
$$

Let's check 1.

- Is 0 in W^{\perp} ? Yes: $0 \cdot w=0$ for any w in W.
- Suppose x, y are in W^{\perp}. So $x \cdot w=0$ and $y \cdot w=0$ for all w in W. Then $(x+y) \cdot w=x \cdot w+y \cdot w=0+0=0$ for all w in W. So $x+y$ is also in W^{\perp}.
- Suppose x is in W^{\perp}. So $x \cdot w=0$ for all w in W. If c is a scalar, then $(c x) \cdot w=c(x \cdot 0)=c(0)=0$ for any w in W. So $c x$ is in W^{\perp}.

Orthogonal Complements

Computation

Problem: if $W=\operatorname{Span}\left\{\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$, compute W^{\perp}.
By property 4, we have to find the null space of the matrix whose rows are $\left(\begin{array}{lll}1 & 1 & -1\end{array}\right)$ and $\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)$, which we did before:

$$
\operatorname{Nul}\left(\begin{array}{ccc}
1 & 1 & -1 \\
1 & 1 & 1
\end{array}\right)=\operatorname{Span}\left\{\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)\right\}
$$

[interactive]

$$
\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}^{\perp}=\operatorname{Nul}\left(\begin{array}{c}
-v_{1}^{T}- \\
-v_{2}^{T}- \\
\vdots \\
-v_{m}^{T}-
\end{array}\right)
$$

Orthogonal Complements

Definition

The row space of an $m \times n$ matrix A is the span of the rows of A. It is denoted Row A. Equivalently, it is the column space of A^{T} :

$$
\text { Row } A=\operatorname{Col} A^{T} .
$$

It is a subspace of \mathbf{R}^{n}.
We showed before that if A has rows $v_{1}^{T}, v_{2}^{T}, \ldots, v_{m}^{T}$, then

$$
\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}^{\perp}=\operatorname{Nul} A
$$

Hence we have shown:
Fact: $(\operatorname{Row} A)^{\perp}=\operatorname{Nul} A$.
Replacing A by A^{T}, and remembering Row $A^{T}=\operatorname{Col} A$:
Fact: $(\operatorname{Col} A)^{\perp}=\operatorname{Nul} A^{\top}$.
Using property 2 and taking the orthogonal complements of both sides, we get:
Fact: $(\operatorname{Nul} A)^{\perp}=\operatorname{Row} A$ and $\operatorname{Col} A=\left(\operatorname{Nul} A^{T}\right)^{\perp}$.

Orthogonal Complements

Orthogonal Complements of Most of the Subspaces We've Seen

$$
\begin{gathered}
\text { For any vectors } v_{1}, v_{2}, \ldots, v_{m}: \\
\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}^{\perp}=\operatorname{Nul}\left(\begin{array}{c}
-v_{1}^{\top}- \\
-v_{2}^{\top}- \\
\vdots \\
-v_{m}^{\top}-
\end{array}\right)
\end{gathered}
$$

For any matrix A :

$$
\begin{gathered}
\text { Row } A=\operatorname{Col} A^{T} \\
\text { and }
\end{gathered}
$$

$$
\begin{array}{rlrl}
(\operatorname{Row} A)^{\perp} & =\operatorname{Nul} A \quad \operatorname{Row} A & =(\operatorname{Nul} A)^{\perp} \\
(\operatorname{Col} A)^{\perp} & =\operatorname{Nul} A^{T} & \operatorname{Col} A & =\left(\operatorname{Nul} A^{T}\right)^{\perp}
\end{array}
$$

For any other subspace W, first find a basis v_{1}, \ldots, v_{m}, then use the above trick to compute $W^{\perp}=\operatorname{Span}\left\{v_{1}, \ldots, v_{m}\right\}^{\perp}$.

Section 7.3

Orthogonal Projections

Best Approximation

Suppose you measure a data point x which you know for theoretical reasons must lie on a subspace W.

Due to measurement error, though, the measured x is not actually in W. Best approximation: y is the closest point to x on W.

How do you know that y is the closest point? The vector from y to x is orthogonal to W : it is in the orthogonal complement W^{\perp}.

Orthogonal Decomposition

Theorem

Every vector x in \mathbf{R}^{n} can be written as

$$
x=x_{w}+x_{W \perp}
$$

for unique vectors x_{W} in W and $x_{W \perp}$ in W^{\perp}.
The equation $x=x_{W}+x_{W \perp}$ is called the orthogonal decomposition of x (with respect to W).

The vector x_{W} is the orthogonal projection of x onto W.

The vector x_{W} is the closest vector to x on W. [interactive 1] [interactive 2]

Orthogonal Decomposition

Justification

Theorem

Every vector x in \mathbf{R}^{n} can be written as

$$
x=x_{w}+x_{w \perp}
$$

for unique vectors x_{W} in W and $x_{W \perp}$ in W^{\perp}.

Why?

Uniqueness: suppose $x=x_{W}+x_{W \perp}=x_{W}^{\prime}+x_{W \perp}^{\prime}$ for x_{W}, x_{W}^{\prime} in W and $x_{W \perp}, x_{W \perp}^{\prime}$ in W^{\perp}. Rewrite:

$$
x_{W}-x_{W}^{\prime}=x_{W \perp}^{\prime}-x_{W \perp}
$$

The left side is in W, and the right side is in W^{\perp}, so they are both in $W \cap W^{\perp}$. But the only vector that is perpendicular to itself is the zero vector! Hence

$$
\begin{gathered}
0=x_{W}-x_{W}^{\prime} \Longrightarrow x_{W}=x_{W}^{\prime} \\
0=x_{W \perp}-x_{W \perp}^{\prime} \Longrightarrow x_{W \perp}=x_{W}
\end{gathered}
$$

Existence: We will compute the orthogonal decomposition later using orthogonal projections.

Orthogonal Decomposition

Example

Let W be the $x y$-plane in \mathbf{R}^{3}. Then W^{\perp} is the z-axis.

$$
\begin{array}{ll}
x=\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right) \Longrightarrow x_{W}=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right) & x_{W \perp}=\left(\begin{array}{l}
0 \\
0 \\
3
\end{array}\right) . \\
x=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \Longrightarrow x_{W}=\left(\begin{array}{l}
a \\
b \\
0
\end{array}\right) & x_{W \perp}=\left(\begin{array}{l}
0 \\
0 \\
c
\end{array}\right) .
\end{array}
$$

This is just decomposing a vector into a "horizontal" component (in the $x y$-plane) and a "vertical" component (on the z-axis).

Orthogonal Decomposition

Problem: Given x and W, how do you compute the decomposition $x=x_{W}+x_{W \perp}$?
Observation: It is enough to compute x_{W}, because $x_{W \perp}=x-x_{W}$.

The $A^{T} A$ trick

Theorem (The $A^{T} A$ Trick)

Let W be a subspace of \mathbf{R}^{n}, let $v_{1}, v_{2}, \ldots, v_{m}$ be a spanning set for W (e.g., a basis), and let

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{m} \\
\mid & \mid & & \mid
\end{array}\right)
$$

Then for any x in \mathbf{R}^{n}, the matrix equation

$$
A^{T} A v=A^{T} x \quad(\text { in the unknown vector } v)
$$

is consistent, and $x_{W}=A v$ for any solution v.

Recipe for Computing $x=x_{W}+x_{W \perp}$

- Write W as a column space of a matrix A.
- Find a solution v of $A^{T} A v=A^{T} x$ (by row reducing).
- Then $x_{w}=A v$ and $x_{W \perp}=x-x_{W}$.

The $A^{T} A$ Trick

Example

Problem: Compute the orthogonal projection of a vector $x=\left(x_{1}, x_{2}, x_{3}\right)$ in \mathbf{R}^{3} onto the $x y$-plane.

First we need a basis for the $x y$-plane: let's choose

$$
e_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad e_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad \text { man } \rightarrow \quad A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right) .
$$

Then

$$
A^{T} A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I_{2} \quad A^{T}\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\binom{x_{1}}{x_{2}} .
$$

Then $A^{T} A v=v$ and $A^{T} x=\binom{x_{1}}{x_{2}}$, so the only solution of $A^{T} A v=A^{T} x$ is $v=\binom{x_{1}}{x_{2}}$. Therefore,

$$
x_{W}=A v=A\binom{x_{1}}{x_{2}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
0
\end{array}\right)
$$

The $A^{T} A$ Trick

Another Example

Problem: Let

$$
x=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \quad W=\left\{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \text { in } \mathbf{R}^{3} \mid x_{1}-x_{2}+x_{3}=0\right\}
$$

Compute the distance from x to W.
The distance from x to W is $\left\|x_{W} \perp\right\|$, so we need to compute the orthogonal projection. First we need a basis for $W=\operatorname{Nul}\left(\begin{array}{lll}1 & -1 & 1\end{array}\right)$. This matrix is in RREF, so the parametric form of the solution set is

$$
\begin{aligned}
& x_{1}=x_{2}-x_{3} \\
& x_{2}=x_{2} \\
& x_{3}=
\end{aligned} \quad \begin{aligned}
& \text { PVF } \\
& x_{3}
\end{aligned} \quad\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+x_{3}\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) .
$$

Hence we can take a basis to be

$$
\left\{\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)\right\} \quad \text { пй } \quad A=\left(\begin{array}{cc}
1 & -1 \\
1 & 0 \\
0 & 1
\end{array}\right)
$$

The $A^{T} A$ Trick

Another Example, Continued

Problem: Let

$$
x=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \quad W=\left\{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \text { in } \mathbf{R}^{3} \mid x_{1}-x_{2}+x_{3}=0\right\}
$$

Compute the distance from x to W.
We compute

$$
A^{T} A=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right) \quad A^{T} x=\binom{3}{2}
$$

To solve $A^{T} A v=A^{T} x$ we form an augmented matrix and row reduce:

$$
\begin{gathered}
\left(\begin{array}{rr|r}
2 & -1 & 3 \\
-1 & 2 & 2
\end{array}\right) \quad \stackrel{\text { RREF }}{\text { R⿴\zh11 } \rightarrow}\left(\begin{array}{lll}
1 & 0 & 8 / 3 \\
0 & 1 & 7 / 3
\end{array}\right) \quad \text { mu } \rightarrow \quad v=\frac{1}{3}\binom{8}{7} . \\
x_{w}=A v=\frac{1}{3}\left(\begin{array}{l}
1 \\
8 \\
7
\end{array}\right) \quad x_{w \perp}=x-x_{w}=\frac{1}{3}\left(\begin{array}{c}
2 \\
-2 \\
2
\end{array}\right) .
\end{gathered}
$$

The distance is $\left\|x_{W \perp}\right\|=\frac{1}{3} \sqrt{4+4+4} \approx 1.155$.

The $A^{T} A$ trick

Theorem (The $A^{T} A$ Trick)
Let W be a subspace of \mathbf{R}^{n}, let $v_{1}, v_{2}, \ldots, v_{m}$ be a spanning set for W (e.g., a basis), and let

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{m} \\
\mid & \mid & & \mid
\end{array}\right)
$$

Then for any x in \mathbf{R}^{n}, the matrix equation

$$
A^{T} A v=A^{T} x \quad(\text { in the unknown vector } v)
$$

is consistent, and $x_{w}=A v$ for any solution v.
Proof: Let $x=x_{W}+x_{W \perp}$. Then $x_{W \perp}$ is in $W^{\perp}=\operatorname{Nul}\left(A^{T}\right)$, so $A^{T} x_{W \perp}=0$. Hence

$$
A^{T} x=A^{T}\left(x_{W}+x_{W \perp}\right)=A^{T} x_{W}+A^{T} x_{W \perp}=A^{T} x_{W} .
$$

Since x_{W} is in $W=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, we can write

$$
x_{W}=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m} .
$$

If $v=\left(c_{1}, c_{2}, \ldots, c_{m}\right)$ then $A v=x_{W}$, so

$$
A^{T} x=A^{T} x_{w}=A^{T} A v
$$

Orthogonal Projection onto a Line

Problem: Let $L=\operatorname{Span}\{u\}$ be a line in \mathbf{R}^{n} and let x be a vector in \mathbf{R}^{n}.
Compute x_{L}.
We have to solve $u^{T} u v=u^{T} x$, where u is an $n \times 1$ matrix. But $u^{T} u=u \cdot u$ and $u^{T} x=u \cdot x$ are scalars, so

$$
v=\frac{u \cdot x}{u \cdot u} \quad \Longrightarrow \quad x_{L}=u v=\frac{u \cdot x}{u \cdot u} u
$$

Projection onto a Line
The projection of x onto a line $L=\operatorname{Span}\{u\}$ is

$$
x_{L}=\frac{u \cdot x}{u \cdot u} u \quad x_{L \perp}=x-x_{L} .
$$

Orthogonal Projection onto a Line

Example

Problem: Compute the orthogonal projection of $x=\binom{-6}{4}$ onto the line L spanned by $u=\binom{3}{2}$, and find the distance from u to L.

$$
x_{L}=\frac{x \cdot u}{u \cdot u} u=\frac{-18+8}{9+4}\binom{3}{2}=-\frac{10}{13}\binom{3}{2} \quad x_{L \perp}=x-x_{L}=\frac{1}{13}\binom{-48}{72} .
$$

The distance from x to L is

$$
\left\|x_{L \perp}\right\|=\frac{1}{13} \sqrt{48^{2}+72^{2}} \approx 6.656
$$

[interactive]

Summary

Let W be a subspace of \mathbf{R}^{n}.

- The orthogonal complement W^{\perp} is the set of all vectors orthogonal to everything in W.
- We have $\left(W^{\perp}\right)^{\perp}=W$ and $\operatorname{dim} W+\operatorname{dim} W^{\perp}=n$.
- Row $A=\operatorname{Col} A^{T}$, $(\text { Row } A)^{\perp}=\operatorname{Nul} A$, Row $A=(\operatorname{Nul} A)^{\perp}$, $(\operatorname{Col} A)^{\perp}=\operatorname{Nul} A^{T}, \operatorname{Col} A=\left(\operatorname{Nul} A^{T}\right)^{\perp}$.
- Orthogonal decomposition: any vector x in \mathbf{R}^{n} can be written in a unique way as $x=x_{W}+x_{W \perp}$ for x_{W} in W and $x_{W \perp}$ in W^{\perp}. The vector x_{W} is the orthogonal projection of x onto W.
- The vector x_{W} is the closest point to x in W : it is the best approximation.
- The distance from x to W is $\left\|x_{W \perp}\right\|$.
- If $W=\operatorname{Col} A$ then to compute x_{W}, solve the equation $A^{T} A v=A^{T} x$; then $x_{w}=A v$.
- If $W=L=\operatorname{Span}\{u\}$ is a line then $x_{L}=\frac{u \cdot x}{u \cdot u} u$.

