\qquad

Math 1553 Quiz 1, Spring 2019 (10 points, 10 minutes)

Solutions

Show your work on problem 4 or you may receive little or no credit. You do not need to show work or justify your answers on problems 1 through 3.

1. (1 point) Write one point in \mathbf{R}^{5}.

Many answers possible. For example, ($1,-4,0,2,0$) or even ($0,0,0,0,0$).
2. (1 point) Is the equation $x-y+2 \tan (z)=17$ a linear equation in x, y, and z ? Circle your answer: LINEAR NOT LINEAR
3. (3 points) Write a system of two linear equations in two variables that has exactly one solution. You do not need to justify your answer.

Many answers possible. For example,

$$
\begin{aligned}
& x+y=5 \\
& x-y=2
\end{aligned}
$$

4. (5 points) Find all values of h (if there are any) so that the system of linear equations given below has no solution.

$$
\begin{gathered}
x+y=1 \\
3 x-h y=2 .
\end{gathered}
$$

We do one row-replacement.

$$
\left(\begin{array}{rr|r}
1 & 1 & 1 \\
3 & -h & 2
\end{array}\right) \xrightarrow{R_{2}=R_{2}-3 R_{1}}\left(\begin{array}{rr|r}
1 & 1 & 1 \\
0 & -h-3 & -1
\end{array}\right) .
$$

If $-h-3=0$, then the system is inconsistent since the second row is $0=-1$, so the system is inconsistent if $h=-3$. (if $h \neq-3$ we can solve for y in the second equation and back-substitute, so then it will be a consistent system)

Alternatively, we see these lines will be parallel precisely when the second line's left side is a scalar multiple of the first line's left side (the x term necessitates it is a factor of 3). This means $-h=1 \cdot 3$, so $h=-3$. When $h=-3$ the system is

$$
\begin{gathered}
x+y=1 \\
3 x+3 y=2
\end{gathered}
$$

which are parallel non-identical lines.

