\qquad

Math 1553 Quiz 5, Spring 2019 (10 points, 10 minutes)

Solutions

1. Answer each question. No work is necessary for this problem.
a) Suppose $S: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ is the matrix transformation $S(x)=\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 3\end{array}\right) x$.

Is S one-to-one? NO
Is S onto? YES
b) Suppose $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is given by $T(x, y)=(x-y, x-y)$.

Is T one-to-one?
NO
Is T onto? NO
c) Suppose $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is a one-to-one matrix transformation. Which one of the following must be true? (cicle one)

$$
m \geq n
$$

2. (5 points) Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the linear transformation that first reflects across the x-axis, then rotates clockwise by 45°. Find the standard matrix A for T.

Show your steps clearly and simplify all values of trigonometric functions (do not leave your answer in terms of sines and cosines).

Solution: $A=\left(T\left(e_{1}\right) T\left(e_{2}\right)\right)$. Here, e_{1} is fixed by reflection across the x-axis, then rotated 45° clockwise to arrive at $\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$. Also, e_{2} is flipped to $\binom{0}{-1}$ then rotated clockwise 45° to arrive at $\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$.

$$
e_{1}: \quad\binom{1}{0} \rightsquigarrow\binom{1}{0} \rightsquigarrow\binom{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}, \quad e_{2}: \quad\binom{0}{1} \rightsquigarrow\binom{0}{-1} m\binom{-\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}} .
$$

So

$$
A=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right)
$$

It's also possible to do the problem with matrix multiplication if you wish, since we did it in class so soon after 4.2 and 4.3.

$$
\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right) .
$$

