Math 1553 Worksheet, Chapter 7

1. True or false (justify your answer!): If u, v, w are vectors in \mathbf{R}^{n} with $u \perp v$ and $v \perp w$, then $u \perp w$.

Solution.

False. For example, take $u=\binom{1}{0}, v=\binom{0}{1}$, and $w=\binom{2}{0}$. Then $u \perp v$ and $v \perp w$ but $u \cdot w=2$.
2. Let W be the set of all vectors in \mathbf{R}^{3} of the form $(x, x-y, y)$ where x and y are real numbers.
a) Find a basis for W^{\perp}.
b) Find the matrix B for orthogonal projection onto W.
c) Diagonalize B by finding an invertible matrix C and diagonal matrix D so that $B=C D C^{-1}$.

Solution.

a) A vector in W has the form
$\left(\begin{array}{c}x \\ x-y \\ y\end{array}\right)=\left(\begin{array}{l}x \\ x \\ 0\end{array}\right)+\left(\begin{array}{c}0 \\ -y \\ y\end{array}\right)=x\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)+y\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right), \quad$ so W has basis $\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)\right\}$.
To get W^{\perp} we find $\operatorname{Nul}\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right)$ which gives us $x_{1}=-x_{3}, x_{2}=x_{3}$, and $x_{3}=x_{3}$ (free), so W^{\perp} has basis $\left\{\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right)\right\}$.
b) Let A be the matrix whose columns are the basis vectors for W : $A=\left(\begin{array}{cc}1 & 0 \\ 1 & -1 \\ 0 & 1\end{array}\right)$.

We calculate $A^{T} A=\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 1 & -1 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right)$, so

$$
\begin{aligned}
B & =A\left(A^{T} A\right)^{-1} A^{T}=\left(\begin{array}{cc}
1 & 0 \\
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)^{-1}\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
1 & -1 \\
0 & 1
\end{array}\right) \frac{1}{3}\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)=\frac{1}{3}\left(\begin{array}{ccc}
2 & 1 & 1 \\
1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right) .
\end{aligned}
$$

c) The basis for W is a basis for the 1-eigenspace of B, while the basis for W^{\perp} is a basis for the 0 -eigenspace of B. Thus $B=C D C^{-1}$ where

$$
C=\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & -1 & 1 \\
0 & 1 & 1
\end{array}\right) \quad D=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

3. Find, and draw, the best fit line $y=M x+B$ through the points $(0,0),(1,8),(3,8)$, and $(4,20)$.

Solution.

We want to find a least squares solution to the system of linear equations

$$
\begin{aligned}
0 & =M(0)+B \\
8 & =M(1)+B \\
8 & =M(3)+B \\
20 & =M(4)+B
\end{aligned} \quad \Longleftrightarrow \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 1 \\
3 & 1 \\
4 & 1
\end{array}\right)\binom{M}{B}=\left(\begin{array}{c}
0 \\
8 \\
8 \\
20
\end{array}\right) .
$$

Note the order of M (the slope) and B (the constant term) that we chose when forming the columns of our matrix A. This means that our least-squares answer will have first entry equal to the slope and second entry equal to the constant term of the best-fit line. We solve $A^{T} A \widehat{x}=A^{T} b$ for \widehat{x}.

$$
\begin{aligned}
& A^{T} A=\left(\begin{array}{llll}
0 & 1 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 1 \\
3 & 1 \\
4 & 1
\end{array}\right)=\left(\begin{array}{cc}
26 & 8 \\
8 & 4
\end{array}\right) \\
& A^{T} b=\left(\begin{array}{llll}
0 & 1 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
0 \\
8 \\
8 \\
20
\end{array}\right)=\binom{112}{36} \\
& \left(A^{T} A \mid A^{T} b\right)=\left(\begin{array}{rr|r}
26 & 8 & 112 \\
8 & 4 & 36
\end{array}\right) \xrightarrow{\text { rref }}\left(\begin{array}{ll|l}
1 & 0 & 4 \\
0 & 1 & 1
\end{array}\right) .
\end{aligned}
$$

The least squares solution is $M=4$ and $B=1$, so the best fit line is $y=4 x+1$.
Aside: Not all least-squares applications involve best-fit lines. Had we wanted a quadratic function to fit our data, we could have instead found the best-fit parabola $A x^{2}+B x+C$. We would have gotten:

$$
\begin{aligned}
0 & =A\left(0^{2}\right)+B(0)+C \\
8 & =A\left(1^{2}\right)+B(1)+C \\
8 & =A\left(3^{2}\right)+B(3)+C \\
20 & =A\left(4^{2}\right)+B(4)+C
\end{aligned} \quad \Longleftrightarrow \quad\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 1 & 1 \\
9 & 3 & 1 \\
16 & 4 & 1
\end{array}\right)\left(\begin{array}{l}
A \\
B \\
C
\end{array}\right)=\left(\begin{array}{c}
0 \\
8 \\
8 \\
20
\end{array}\right) .
$$

Painful computations would show that the least-squares solution is $A=2 / 3, B=$ $4 / 3$, and $C=2$, so the best fit quadratic is $y=\frac{2}{3} x^{2}+\frac{4}{3} x+2$.

Below is a picture with the best-fit line and best-fit parabola. The "best fit cubic" would be the cubic $y=\frac{5}{3} x^{3}-\frac{28}{3} x^{2}+\frac{47}{3} x$, which actually passes through all four data points.

