Solving Systems of Equations

Example

Solve the system of equations

x + 2y + 3z = 6 2x - 3y + 2z = 143x + y - z = -2

This is the kind of problem we'll talk about for the first half of the course.

- A solution is a list of numbers x, y, z, ... that makes all of the equations true.
- The solution set is the collection of all solutions.
- Solving the system means finding the solution set in a "parameterized" form.

What is a systematic way to solve a system of equations?

Solving Systems of Equations

Example

Solve the system of equations

$$x + 2y + 3z = 6$$

$$2x - 3y + 2z = 14$$

$$3x + y - z = -2$$

What strategies do you know?

- Substitution
- Elimination

Both are perfectly valid, but only elimination scales well to large numbers of equations.

Solving Systems of Equations

Example

Solve the system of equations

x + 2y + 3z = 6 2x - 3y + 2z = 143x + y - z = -2

Elimination method: in what ways can you manipulate the equations?

Multiply an equation by a nonzero number. (scale)
Add a multiple of one equation to another. (replacement)
Swap two equations. (swap)

Solving Systems of Equations Better notation

It sure is a pain to have to write x, y, z, and = over and over again.

Matrix notation: write just the numbers, in a box, instead!

$$\begin{array}{c|cccc} x + 2y + 3z &= & 6 \\ 2x - 3y + 2z &= & 14 \\ 3x + & y - & z &= -2 \end{array} \qquad \begin{array}{c|cccccc} 1 & 2 & 3 & 6 \\ 2 & -3 & 2 & 14 \\ 3 & 1 & -1 & -2 \end{array}$$

This is called an **(augmented) matrix**. Our equation manipulations become **elementary row operations**:

Multiply all entries in a row by a nonzero number. (scale)
 Add a multiple of each entry of one row to the corresponding entry in another. (row replacement)
 Swap two rows. (swap)

Row Operations, Fundamental Example

Example

Solve the system of equations

$$x + 2y + 3z = 6$$

$$2x - 3y + 2z = 14$$

$$3x + y - z = -2$$

Start:

/1	2	3	6 \
2	-3	2	14
3	1	-1	-2/

Goal: we want our elimination method to eventually produce a system of equations like

$$\begin{array}{cccc} x & & = A & & \\ y & & = B & & \text{or in matrix form,} & \begin{pmatrix} 1 & 0 & 0 & | & A \\ 0 & 1 & 0 & | & B \\ 0 & 0 & 1 & | & C \end{pmatrix} \\ z & = C & & \end{array}$$

So we need to do row operations that make the start matrix look like the end one.

Strategy (preliminary): fiddle with it so we only have ones and zeros. [animated]

Row Operations

$$\begin{pmatrix} 1 & 2 & 3 & | & 6 \\ 2 & -3 & 2 & | & 14 \\ 3 & 1 & -1 & | & -2 \end{pmatrix}$$

 $R_2 = R_2 - 2R_1$

$$R_3 = R_3 - 3R_1$$

We want these to be zero. So we subract multiples of the first row.

$$\begin{pmatrix} 1 & 2 & 3 & 6 \\ 0 & -7 & -4 & 2 \\ 0 & -5 & -10 & -20 \end{pmatrix}$$

We want these to be zero.

It would be nice if this were a 1. We could divide by -7, but that would produce ugly fractions.

Let's swap the last two rows first.

$$R_2 \leftrightarrow R_3$$

 $R_2 = R_2 \div -5$

 $R_3 = R_3 + 7R_2$

$$\begin{pmatrix} 1 & 2 & 3 & 6 \\ 0 & -7 & -4 & 2 \\ 3 & 1 & -1 & | & -2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & | & 6 \\ 0 & -7 & -4 & 2 \\ 0 & -5 & -10 & | & -20 \end{pmatrix} \\ \begin{pmatrix} 1 & 2 & 3 & | & 6 \\ 0 & -5 & -10 & | & -20 \\ 0 & -7 & -4 & | & 2 \end{pmatrix} \\ \begin{pmatrix} 1 & 2 & 3 & | & 6 \\ 0 & 1 & 2 & | & 4 \\ 0 & -7 & -4 & | & 2 \end{pmatrix} \\ \begin{pmatrix} 1 & 2 & 3 & | & 6 \\ 0 & 1 & 2 & | & 4 \\ 0 & 0 & 10 & | & 30 \end{pmatrix}$$

1 -

- \

Row Operations

Row Equivalence

- Important

The process of doing row operations to a matrix does not change the solution set of the corresponding linear equations!

Definition

Two matrices are called **row equivalent** if one can be obtained from the other by doing some number of elementary row operations.

So the linear equations of row-equivalent matrices have the same solution set.

A Bad Example

Example

Solve the system of equations

$$x + y = 2$$

$$3x + 4y = 5$$

$$4x + 5y = 9$$

Let's try doing row operations: [interactive row reducer]

First clear these by
subtracting multiples
of the first row.
Now clear this by
subtracting

$$\begin{pmatrix}
1 & 1 & | & 2 \\
3 & 4 & 5 & | & 9
\end{pmatrix}$$

$$R_2 = R_2 - 3R_1$$

$$\begin{pmatrix}
1 & 1 & | & 2 \\
0 & 1 & | & -1 \\
4 & 5 & | & 9
\end{pmatrix}$$

$$R_3 = R_3 - 4R_1$$

$$\begin{pmatrix}
1 & 1 & | & 2 \\
0 & 1 & | & -1 \\
0 & 1 & | & 1
\end{pmatrix}$$

$$R_3 = R_3 - R_2$$

$$\begin{pmatrix}
1 & 1 & | & 2 \\
0 & 1 & | & -1 \\
0 & 1 & | & 1
\end{pmatrix}$$
Now clear this by
subtracting
the second row.

$$\begin{pmatrix}
1 & 1 & | & 2 \\
0 & 1 & | & -1 \\
0 & 1 & | & 1
\end{pmatrix}$$

A Bad Example

$$\begin{pmatrix} 1 & 1 & | & 2 \\ 0 & 1 & | & -1 \\ 0 & 0 & | & 2 \end{pmatrix} \xrightarrow{\text{translates into}} \begin{array}{c} x + y = & 2 \\ & & y = -1 \\ & & 0 = & 2 \end{array}$$

In other words, the original equations

But the latter system obviously has no solutions (there is no way to make them all true), so our original system has no solutions either.

Definition

A system of equations is called **inconsistent** if it has no solution. It is **consistent** otherwise.

Section 1.2

Row Reduction

Row Echelon Form

Let's come up with an *algorithm* for turning an arbitrary matrix into a "solved" matrix. What do we mean by "solved"?

A matrix is in row echelon form if

- 1. All zero rows are at the bottom.
- 2. Each leading nonzero entry of a row is to the *right* of the leading entry of the row above.
- 3. Below a leading entry of a row, all entries are zero.

Picture:

Definition

A **pivot** \star is the first nonzero entry of a row of a matrix. A **pivot column** is a column containing a pivot of a matrix *in row echelon form*.

Reduced Row Echelon Form

A matrix is in **reduced row echelon form** if it is in row echelon form, and in addition,

- 4. The pivot in each nonzero row is equal to 1.
- 5. Each pivot is the only nonzero entry in its column.

Picture:

(1	0	*	0	*)	
0	1	*	0	*	$\star = any number$
0	0	0	1	*	1 = pivot
0/	0	0	0	0/	I I

Note: Echelon forms do not care whether or not a column is augmented. Just ignore the vertical line.

Question

Can every matrix be put into reduced row echelon form only using row operations?

Answer: Yes! Stay tuned.

Reduced Row Echelon Form

Continued

Why is this the "solved" version of the matrix?

$$egin{pmatrix} 1 & 0 & 0 & | & 1 \ 0 & 1 & 0 & | & -2 \ 0 & 0 & 1 & | & 3 \ \end{pmatrix}$$

is in reduced row echelon form. It translates into

$$x = 1$$
$$y = -2$$
$$z = 3$$

which is clearly the solution.

But what happens if there are fewer pivots than rows?

$$\begin{pmatrix} 1 & 2 & 0 & | & 1 \\ 0 & 0 & 1 & | & 3 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

... parametrized solution set (later).

Poll

Poll Which of the following matrices are in reduced row echelon form? A. $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ B. $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ C. $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ D. $\begin{pmatrix} 0 & 1 & 0 & 0 \end{pmatrix}$ E. $\begin{pmatrix} 0 & 1 & 8 & 0 \end{pmatrix}$ F. $\begin{pmatrix} 1 & 17 & | & 0 \\ 0 & 0 & | & 1 \end{pmatrix}$

Answer: B, D, E, F.

Note that A is in row echelon form though.

Summary

- Solving a system of equations means producing all values for the unknowns that make all the equations true simultaneously.
- It is easier to solve a system of linear equations if you put all the coefficients in an augmented matrix.
- Solving a system using the elimination method means doing elementary row operations on an augmented matrix.
- Two systems or matrices are row-equivalent if one can be obtained from the other by doing a sequence of elementary row operations. Row-equivalent systems have the same solution set.
- A linear system with no solutions is called **inconsistent**.
- The (reduced) row echelon form of a matrix is its "solved" row-equivalent version.