Sections 2.7 and 2.9

Basis, Dimension, Rank and Basis Theorems

Subspaces

Reminder

Recall: a subspace of \mathbf{R}^{n} is the same thing as a span, except we haven't computed a spanning set yet.

For example, $\operatorname{Col} A$ and $\operatorname{Nul} A$ for a matrix A.

There are lots of choices of spanning set for a given subspace.

Are some better than others?

Basis of a Subspace

What is the smallest number of vectors that are needed to span a subspace?

Definition

Let V be a subspace of \mathbf{R}^{n}. A basis of V is a set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ in V such that:

1. $V=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, and
2. $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is linearly independent.

The number of vectors in a basis is the dimension of V, and is written $\operatorname{dim} V$.

Why is a basis the smallest number of vectors needed to span?
Recall: linearly independent means that every time you add another vector, the span gets bigger.

Hence, if we remove any vector, the span gets smaller: so any smaller set can't span V.

Important

A subspace has many different bases, but they all have the same number of vectors.

Bases of \mathbf{R}^{2}

Question

What is a basis for \mathbf{R}^{2} ?
We need two vectors that span \mathbf{R}^{2} and are linearly independent. $\left\{e_{1}, e_{2}\right\}$ is one basis.

1. They span: $\binom{a}{b}=a e_{1}+b e_{2}$.
2. They are linearly independent because they are not collinear.

Question

What is another basis for \mathbf{R}^{2} ?
Any two nonzero vectors that are not collinear. $\left\{\binom{1}{0},\binom{1}{1}\right\}$ is also a basis.

1. They span: $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ has a pivot in every row.
2. They are linearly independent: $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ has a pivot in every column.

Bases of \mathbf{R}^{n}

The unit coordinate vectors

$$
e_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right), \quad e_{2}=\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0 \\
0
\end{array}\right), \quad \ldots, \quad e_{n-1}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1 \\
0
\end{array}\right), \quad e_{n}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

are a basis for \mathbf{R}^{n}. The identity matrix has columns $e_{1}, e_{2}, \ldots, e_{n}$.

1. They span: I_{n} has a pivot in every row.
2. They are linearly independent: I_{n} has a pivot in every column.

In general: $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for \mathbf{R}^{n} if and only if the matrix

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right)
$$

has a pivot in every row and every column.
Sanity check: we have shown that $\operatorname{dim} \mathbf{R}^{n}=n$.

Basis of a Subspace

Example

Example

Let

$$
V=\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \text { in } \mathbf{R}^{3} \mid x+3 y+z=0\right\} \quad \mathcal{B}=\left\{\left(\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
-3
\end{array}\right)\right\}
$$

Verify that \mathcal{B} is a basis for V. (So $\operatorname{dim} V=2$: it is a plane.)
0 . In V : both vectors are in V because

$$
-3+3(1)+0=0 \quad \text { and } \quad 0+3(1)+(-3)=0
$$

1. Span: If $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ is in V, then $y=-\frac{1}{3}(x+z)$, so

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=-\frac{x}{3}\left(\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right)-\frac{z}{3}\left(\begin{array}{c}
0 \\
1 \\
-3
\end{array}\right)
$$

2. Linearly independent:

$$
c_{1}\left(\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{c}
0 \\
1 \\
-3
\end{array}\right)=0 \Longrightarrow\left(\begin{array}{c}
-3 c_{1} \\
c_{1}+c_{2} \\
-3 c_{2}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longrightarrow c_{1}=c_{2}=0
$$

Basis for Nul A

Fact

The vectors in the parametric vector form of the general solution to $A x=0$ always form a basis for $\operatorname{Nul} A$.

Example
$A=\left(\begin{array}{rrrr}1 & 2 & 0 & -1 \\ -2 & -3 & 4 & 5 \\ 2 & 4 & 0 & -2\end{array}\right) \xrightarrow{\text { rref }} \underset{\sim}{l}\left(\begin{array}{rrrr}1 & 0 & -8 & -7 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 0 & 0\end{array}\right)$

$$
\begin{aligned}
& \text { parametric } \\
& \begin{array}{l}
\text { vector } \\
\text { form }
\end{array} \\
& \text { mumm form } \\
& \left.\left.\underset{\uparrow}{x}=x_{3}\left(\begin{array}{c}
8 \\
-4 \\
1 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
7 \\
-3 \\
0 \\
1
\end{array}\right) \underset{\substack{\text { basis of } \\
\text { Nul } A \\
\text { mum }}}{ }\right)\left(\begin{array}{c}
8 \\
-4 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
7 \\
-3 \\
0 \\
1
\end{array}\right)\right\}
\end{aligned}
$$

1. The vectors span $\operatorname{Nul} A$ by construction (every solution to $A x=0$ has this form).
2. Can you see why they are linearly independent? (Look at the last two rows.)

Basis for $\operatorname{Col} A$

Fact

The pivot columns of A always form a basis for $\operatorname{Col} A$.

Warning: I mean the pivot columns of the original matrix A, not the row-reduced form. (Row reduction changes the column space.)
Example

$$
A=\left(\begin{array}{rrrr}
1 \\
-2 & 0 & 0 & -1 \\
2 & 4 & 5 \\
4 & 0 & -2
\end{array}\right) \underset{\sim}{\text { rref }}\left(\begin{array}{rrrr}
1 & 0 & -8 & -7 \\
0 & 1 & 4 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

pivot columns $=$ basis \{nmmm pivot columns in rref
So a basis for $\operatorname{Col} A$ is

$$
\left\{\left(\begin{array}{r}
1 \\
-2 \\
2
\end{array}\right),\left(\begin{array}{r}
2 \\
-3 \\
4
\end{array}\right)\right\}
$$

Why? See slides on linear independence.

The Basis Theorem

Basis Theorem

Let V be a subspace of dimension m. Then:

- Any m linearly independent vectors in V form a basis for V.
- Any m vectors that span V form a basis for V.

Upshot

If you already know that $\operatorname{dim} V=m$, and you have m vectors $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ in V, then you only have to check one of

1. \mathcal{B} is linearly independent, or
2. \mathcal{B} spans V in order for \mathcal{B} to be a basis.

Example: any three linearly independent vectors form a basis for \mathbf{R}^{3}.

The Rank Theorem

Recall:

- The dimension of a subspace V is the number of vectors in a basis for V.
- A basis for the column space of a matrix A is given by the pivot columns.
- A basis for the null space of A is given by the vectors attached to the free variables in the parametric vector form.

Definition

The rank of a matrix A, written rank A, is the dimension of the column space $\operatorname{Col} A$. The nullity of A, written nullity A, is the dimension of the solution set of $A x=0$.

Observe:
$\operatorname{rank} A=\operatorname{dim} \operatorname{Col} A=$ the number of columns with pivots
nullity $A=\operatorname{dim} \operatorname{Nul} A=$ the number of free variables
$=$ the number of columns without pivots.

Rank Theorem

If A is an $m \times n$ matrix, then rank $A+$ nullity $A=n=$ the number of columns of A.
In other words, [interactive 1] [interactive 2]
$($ dimension of column space $)+($ dimension of solution set $)=$ (number of variables).

The Rank Theorem

Example

$$
A=(\underbrace{\left.\begin{array}{r}
1 \\
-2 \\
2
\end{array} \begin{array}{rrr}
2 \\
-3 & 0 & -1 \\
4 & 5 \\
0 & -2
\end{array}\right) \underset{\text { free variables }}{\text { muref }}\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array} \begin{array}{r}
-8 \\
4 \\
0 \\
0
\end{array}\right)}_{\text {basis of } \operatorname{Col} A}
$$

A basis for $\operatorname{Col} A$ is

$$
\left\{\left(\begin{array}{r}
1 \\
-2 \\
2
\end{array}\right),\left(\begin{array}{r}
2 \\
-3 \\
4
\end{array}\right)\right\}
$$

so $\operatorname{rank} A=\operatorname{dim} \operatorname{Col} A=2$.
Since there are two free variables x_{3}, x_{4}, the parametric vector form for the solutions to $A x=0$ is

$$
x=x_{3}\left(\begin{array}{r}
8 \\
-4 \\
1 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{r}
7 \\
-3 \\
0 \\
1
\end{array}\right) \underset{\underset{\text { minnumin }}{\text { basis }} \operatorname{Nul} A}{\text { bunn }}\left\{\left(\begin{array}{r}
8 \\
-4 \\
1 \\
0
\end{array}\right),\left(\begin{array}{r}
7 \\
-3 \\
0 \\
1
\end{array}\right)\right\} .
$$

Thus nullity $A=\operatorname{dim} \operatorname{Nul} A=2$.
The Rank Theorem says $2+2=4$.

Poll
True or False: If A is a 10×15 matrix and there is a basis of $\operatorname{Col} A$ consisting of 4 vectors, then there is a basis of $\operatorname{Nul} A$ consisting of 6 vectors.

False: if $\operatorname{rank} A=4$ then nullity $A=15-4=11$.

Summary

- A basis of a subspace is a minimal set of spanning vectors.
- There are recipes for computing a basis for the column space and null space of a matrix.
- The dimension of a subspace is the number of vectors in any basis.
- The basis theorem says that if you already know that $\operatorname{dim} V=m$, and you have m vectors in V, then you only have to check if they span or they're linearly independent to know they're a basis.
- The rank theorem says the dimension of the column space of a matrix, plus the dimension of the null space, is the number of columns of the matrix.

