Chapter 3

Linear Transformations and Matrix Algebra
Section 3.1

Matrix Transformations
Let A be a matrix, and consider the matrix equation $b = Ax$. If we vary x, we can think of this as a \textit{function} of x.

Many functions in real life—the \textit{linear} transformations—come from matrices in this way.

It makes us happy when a function comes from a matrix, because then questions about the function translate into questions a matrix, which we can usually answer.

For this reason, we want to study matrices as functions.
Matrices as Functions

Change in Perspective. Let A be a matrix with m rows and n columns. Let’s think about the matrix equation $b = Ax$ as a function.

- The independent variable (the input) is x, which is a vector in \mathbb{R}^n.
- The dependent variable (the output) is b, which is a vector in \mathbb{R}^m.

As you vary x, then $b = Ax$ also varies. The set of all possible output vectors b is the column space of A.

$\mathbb{R}^n \xrightarrow{b = Ax} \mathbb{R}^m$

[interactive 1] [interactive 2]
Matrices as Functions

Projection

\[A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \]

In the equation \(Ax = b \), the input vector \(x \) is in \(\mathbb{R}^3 \) and the output vector \(b \) is in \(\mathbb{R}^3 \). Then

\[
A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}.
\]

This is projection onto the \(xy \)-plane. Picture:
Matrices as Functions

Reflection

\[A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \]

In the equation \(Ax = b \), the input vector \(x \) is in \(\mathbb{R}^2 \) and the output vector \(b \) is in \(\mathbb{R}^2 \). Then

\[A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ y \end{pmatrix}. \]

This is reflection over the y-axis. Picture:
Matrices as Functions

Dilation

\[A = \begin{pmatrix} 1.5 & 0 \\ 0 & 1.5 \end{pmatrix} \]

In the equation \(Ax = b \), the input vector \(x \) is in \(\mathbb{R}^2 \) and the output vector \(b \) is in \(\mathbb{R}^2 \).

\[
A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1.5 & 0 \\ 0 & 1.5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1.5x \\ 1.5y \end{pmatrix} = 1.5 \begin{pmatrix} x \\ y \end{pmatrix}.
\]

This is dilation (scaling) by a factor of 1.5. Picture:
Matrices as Functions

Identity

\[A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]

In the equation \(Ax = b \), the input vector \(x \) is in \(\mathbb{R}^2 \) and the output vector \(b \) is in \(\mathbb{R}^2 \).

\[
A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}.
\]

This is the identity transformation which does nothing. Picture:
Matrices as Functions

Rotation

\[A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \]

In the equation \(Ax = b \), the input vector \(x \) is in \(\mathbb{R}^2 \) and the output vector \(b \) is in \(\mathbb{R}^2 \). Then

\[A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ x \end{pmatrix}. \]

What is this? Let's plug in a few points and see what happens.

\[A \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \end{pmatrix} \]
\[A \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix} \]
\[A \begin{pmatrix} 0 \\ -2 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \]

It looks like \textit{counterclockwise rotation by 90°}.
Matrices as Functions

Rotation

\[
A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}
\]

In the equation \(Ax = b \), the input vector \(x \) is in \(\mathbb{R}^2 \) and the output vector \(b \) is in \(\mathbb{R}^2 \). Then

\[
A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ x \end{pmatrix}.
\]
In §4.1 there are other examples of geometric transformations of \mathbb{R}^2 given by matrices. Please look them over.
We have been drawing pictures of what it looks like to multiply a matrix by a vector, as a function of the vector.

Now let’s go the other direction. Suppose we have a function, and we want to know, does it come from a matrix?

Example

For a vector \(x \) in \(\mathbb{R}^2 \), let \(T(x) \) be the counterclockwise rotation of \(x \) by an angle \(\theta \). Is \(T(x) = Ax \) for some matrix \(A \)?

If \(\theta = 90^\circ \), then we know \(T(x) = Ax \), where

\[
A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.
\]

But for general \(\theta \), it’s not clear.

Our next goal is to answer this kind of question.
Transformations

Vocabulary

Definition

A **transformation** (or **function** or **map**) from \(\mathbb{R}^n \) to \(\mathbb{R}^m \) is a rule \(T \) that assigns to each vector \(x \) in \(\mathbb{R}^n \) a vector \(T(x) \) in \(\mathbb{R}^m \).

- \(\mathbb{R}^n \) is called the **domain** of \(T \) (the inputs).
- \(\mathbb{R}^m \) is called the **codomain** of \(T \) (the outputs).
- For \(x \) in \(\mathbb{R}^n \), the vector \(T(x) \) in \(\mathbb{R}^m \) is the **image** of \(x \) under \(T \).

 Notation: \(x \mapsto T(x) \).

- The set of all images \(\{ T(x) \mid x \text{ in } \mathbb{R}^n \} \) is the **range** of \(T \).

Notation:

\[
T : \mathbb{R}^n \longrightarrow \mathbb{R}^m \quad \text{means} \quad T \text{ is a transformation from } \mathbb{R}^n \text{ to } \mathbb{R}^m.
\]

It may help to think of \(T \) as a “machine” that takes \(x \) as an input, and gives you \(T(x) \) as the output.
Many of the functions you know and love have domain and codomain \(\mathbb{R} \).

\[
\sin : \mathbb{R} \rightarrow \mathbb{R} \\
\sin(x) = \left(\frac{\text{the length of the opposite edge}}{\text{the hypotenuse of a right triangle with angle} x \text{ in radians}} \right)
\]

Note how I’ve written down the \textit{rule} that defines the function \(\sin \).

\[
f : \mathbb{R} \rightarrow \mathbb{R} \\
f(x) = x^2
\]

Note that “\(x^2 \)” is sloppy (but common) notation for a function: it doesn’t have a name!

You may be used to thinking of a function in terms of its graph.

The horizontal axis is the domain, and the vertical axis is the codomain.

This is fine when the domain and codomain are \(\mathbb{R} \), but it’s hard to do when they’re \(\mathbb{R}^2 \) and \(\mathbb{R}^3 \)! You need five dimensions to draw that graph.
Suppose you are building a robot arm with three joints that can move its hand around a plane, as in the following picture.

Define a transformation \(f: \mathbb{R}^3 \to \mathbb{R}^2 \):

\[
f(\theta, \varphi, \psi) = \text{position of the hand at joint angles } \theta, \varphi, \psi.
\]

Output of \(f \): where is the hand on the plane.

This function does not come from a matrix; belongs to the field of inverse kinematics.
Matrix Transformations

Definition
Let A be an $m \times n$ matrix. The **matrix transformation** associated to A is the transformation

$$T : \mathbb{R}^n \longrightarrow \mathbb{R}^m \quad \text{defined by} \quad T(x) = Ax.$$

In other words, T takes the vector x in \mathbb{R}^n to the vector Ax in \mathbb{R}^m.

For example, if $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$ and $T(x) = Ax$ then

$$T \begin{pmatrix} -1 \\ -2 \\ -3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} -1 \\ -2 \\ -3 \end{pmatrix} = \begin{pmatrix} -14 \\ -32 \end{pmatrix}.$$

- The **domain** of T is \mathbb{R}^n, which is the number of columns of A.
- The **codomain** of T is \mathbb{R}^m, which is the number of rows of A.
- The **range** of T is the set of all images of T:

$$T(x) = Ax = \begin{pmatrix} v_1 & v_2 & \cdots & v_n \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1 v_1 + x_2 v_2 + \cdots + x_n v_n.$$

This is the **column space** of A. It is a span of vectors in the codomain.
Matrix Transformations

Example

\[A = \begin{pmatrix} -1 & 0 \\ 2 & 1 \\ 1 & -1 \end{pmatrix} \quad T(x) = Ax \quad T : \mathbb{R}^2 \rightarrow \mathbb{R}^3. \]

Domain is: \(\mathbb{R}^2 \). Codomain is: \(\mathbb{R}^3 \). Range is: all vectors of the form

\[T \begin{pmatrix} x \\ y \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix} = x \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \]

which is \(\text{Col} \ A \).
The picture of a matrix transformation is the same as the pictures we’ve been drawing all along. Only the language is different. Let

$$A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

and let

$$T(x) = Ax,$$

so $$T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$$. Then

$$T \begin{pmatrix} x \\ y \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ y \end{pmatrix},$$

which is still is reflection over the y-axis. Picture:
Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and let $T(x) = Ax$, so $T: \mathbb{R}^2 \to \mathbb{R}^2$. ($T$ is called a shear.)

What does T do to this sheep?

Hint: first draw a picture what it does to the box *around* the sheep.
We can think of $b = Ax$ as a transformation with input x and output b.

There are vocabulary words associated to transformations: **domain**, **codomain**, **range**.

A transformation that comes from a matrix is called a **matrix transformation**.

In this case, the vocabulary words mean something concrete in terms of matrices.

We like transformations that come from matrices, because questions about those transformations turn into questions about matrices.