Section 3.2

One-to-one and Onto Transformations

Matrix Transformations

Recall: Let A be an $m \times n$ matrix. The matrix transformation associated to A is the transformation

$$
T: \mathbf{R}^{n} \longrightarrow \mathbf{R}^{m} \quad \text { defined by } \quad T(x)=A x
$$

- The domain of T is \mathbf{R}^{n}, which is the number of columns of A.
- The codomain of T is \mathbf{R}^{m}, which is the number of rows of A.
- The range of T is the set of all images of T :

$$
T(x)=A x=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{n} v_{n}
$$

This is the column space of A. It is a span of vectors in the codomain.

Matrix Transformations

Example

Let $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 1\end{array}\right)$ and let $T(x)=A x$, so $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$.

- If $u=\binom{3}{4}$ then $T(u)=\left(\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 1\end{array}\right)\binom{3}{4}=\left(\begin{array}{l}7 \\ 4 \\ 7\end{array}\right)$.
- Let $b=\left(\begin{array}{l}7 \\ 5 \\ 7\end{array}\right)$. Find v in \mathbf{R}^{2} such that $T(v)=b$. Is there more than one?

We want to find v such that $T(v)=A v=b$. We know how to do that:

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 1
\end{array}\right) v=\left(\begin{array}{l}
7 \\
5 \\
7
\end{array}\right) \underset{\substack{\text { matrix } \\
\text { manmun }}}{\substack{\text { augmented }}}\left(\begin{array}{ll|l}
1 & 1 & 7 \\
0 & 1 & 5 \\
1 & 1 & 7
\end{array}\right) \underset{\substack{\text { row } \\
\text { roduce }}}{\text { rown }}\left(\begin{array}{ll|l}
1 & 0 & 2 \\
0 & 1 & 5 \\
0 & 0 & 0
\end{array}\right) .
$$

This gives $x=2$ and $y=5$, or $v=\binom{2}{5}$ (unique). In other words,

$$
T(v)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 1
\end{array}\right)\binom{2}{5}=\left(\begin{array}{l}
7 \\
5 \\
7
\end{array}\right)
$$

Matrix Transformations

Let $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 1\end{array}\right)$ and let $T(x)=A x$, so $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$.

- Is there any c in \mathbf{R}^{3} such that there is more than one v in \mathbf{R}^{2} with $T(v)=c$?
Translation: is there any c in \mathbf{R}^{3} such that the solution set of $A x=c$ has more than one vector v in it?

The solution set of $A x=c$ is a translate of the solution set of $A x=b$ (from before), which has one vector in it. So the solution set to $A x=c$ has only one vector. So no!

- Find c such that there is no v with $T(v)=c$.

Translation: Find c such that $A x=c$ is inconsistent.
Translation: Find c not in the column space of A (i.e., the range of T).
We could draw a picture, or notice that if $c=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$, then our matrix equation translates into

$$
x+y=1 \quad y=2 \quad x+y=3
$$

which is obviously inconsistent.

Matrix Transformations

Non-Example

Note: All of these questions are questions about the transformation T; it still makes sense to ask them in the absence of the matrix A.

The fact that T comes from a matrix means that these questions translate into questions about a matrix, which we know how to do.

Non-example: $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3} \quad T\binom{x}{y}=\left(\begin{array}{c}\sin x \\ x y \\ \cos y\end{array}\right)$
Question: Is there any c in \mathbf{R}^{3} such that there is more than one v in \mathbf{R}^{2} with $T(v)=c$?

Note the question still makes sense, although T has no hope of being a matrix transformation.

By the way,

$$
T\binom{0}{0}=\left(\begin{array}{c}
\sin 0 \\
0 \cdot 0 \\
\cos 0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
\sin \pi \\
0 \cdot \pi \\
\cos 0
\end{array}\right)=T\binom{\pi}{0},
$$

so the answer is yes.

Questions About Transformations

Today we will focus on two important questions one can ask about a transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$:

- Do there exist distinct vectors x, y in \mathbf{R}^{n} such that $T(x)=T(y)$?
- For every vector v in \mathbf{R}^{m}, does there exist a vector x in \mathbf{R}^{n} such that $T(x)=v$?

These are subtle because of the multiple quantifiers involved ("for every", "there exists").

One-to-one Transformations

Definition

A transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is one-to-one (or into, or injective) if different vectors in \mathbf{R}^{n} map to different vectors in \mathbf{R}^{m}. In other words, for every b in \mathbf{R}^{m}, the equation $T(x)=b$ has at most one solution x. Or, different inputs have different outputs. Note that not one-to-one means at least two different vectors in \mathbf{R}^{n} have the same image.

[interactive]

[interactive]

Consider the robot hand transformation from last lecture:

Define $f: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ by:

$$
f(\theta, \varphi, \psi)=\text { position of the hand at joint angles } \theta, \varphi, \psi
$$

$$
\text { Is } f \text { one-to-one? }
$$

No: there is more than one way to move the hand to the same point.

Characterization of One-to-One Matrix Transformations

Theorem

Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a matrix transformation with matrix A. Then the following are equivalent:

- T is one-to-one.
- For each b in \mathbf{R}^{m}, the equation $T(x)=b$ has at most one solution.
- For each b in \mathbf{R}^{m}, the equation $A x=b$ has a unique solution or is inconsistent.
- $A x=0$ has a unique solution.
- The columns of A are linearly independent.
- A has a pivot in every column.

Question

If $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is one-to-one, what can we say about the relative sizes of n and m ?
Answer: T corresponds to an $m \times n$ matrix A. In order for A to have a pivot in every column, it must have at least as many rows as columns: $n \leq m$.

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

For instance, \mathbf{R}^{3} is "too big" to map into \mathbf{R}^{2}.

One-to-One Transformations

Example

Define

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right) \quad T(x)=A x
$$

so $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$. Is T one-to-one?

The reduced row echelon form of A is

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

which has a pivot in every column. Hence T is one-to-one.
[interactive]

One-to-One Transformations

Non-Example

Define

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) \quad T(x)=A x,
$$

so $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$. Is T one-to-one? If not, find two different vectors x, y such that $T(x)=T(y)$.
The reduced row echelon form of A is

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right)
$$

which does not have a pivot in every column. Hence A is not one-to-one. In particular, $A x=0$ has nontrivial solutions. The parametric form of the solutions of $A x=0$ are

$$
x \quad \begin{aligned}
-z & =0 \\
y+z & =0
\end{aligned} \Longrightarrow \begin{aligned}
x & =z \\
y & =-z
\end{aligned}
$$

Taking $z=1$ gives

$$
T\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)=0=T\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

[interactive]

Onto Transformations

Definition

A transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is onto (or surjective) if the range of T is equal to \mathbf{R}^{m} (its codomain). In other words, for every b in \mathbf{R}^{m}, the equation $T(x)=b$ has at least one solution. Or, every possible output has an input. Note that not onto means there is some b in \mathbf{R}^{m} which is not the image of any x in \mathbf{R}^{n}.

[interactive]

[interactive]

Consider the robot hand transformation again:

Define $f: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ by:

$$
f(\theta, \varphi, \psi)=\text { position of the hand at joint angles } \theta, \varphi, \psi
$$

No: it can't reach points that are far away.

Characterization of Onto Matrix Transformations

Theorem

Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a matrix transformation with matrix A. Then the following are equivalent:

- T is onto
- $T(x)=b$ has a solution for every b in \mathbf{R}^{m}
- $A x=b$ is consistent for every b in \mathbf{R}^{m}
- The columns of A span \mathbf{R}^{m}
- A has a pivot in every row

Question

If $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is onto, what can we say about the relative sizes of n and m ?
Answer: T corresponds to an $m \times n$ matrix A. In order for A to have a pivot in every row, it must have at least as many columns as rows: $m \leq n$.

$$
\left(\begin{array}{lllll}
1 & 0 & \star & 0 & \star \\
0 & 1 & \star & 0 & \star \\
0 & 0 & 0 & 1 & \star
\end{array}\right)
$$

For instance, \mathbf{R}^{2} is "too small" to map onto \mathbf{R}^{3}.

Onto Transformations

Define

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) \quad T(x)=A x
$$

so $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$. Is T onto?
The reduced row echelon form of A is

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right)
$$

which has a pivot in every row. Hence T is onto.
Note that T is onto but not one-to-one.
[interactive]

Onto Transformations

Define

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right) \quad T(x)=A x
$$

so $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$. Is T onto? If not, find a vector v in \mathbf{R}^{3} such that there does not exist any x in \mathbf{R}^{2} with $T(x)=v$.

The reduced row echelon form of A is

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

which does not have a pivot in every row. Hence A is not onto.
In order to find a vector v not in the range, we notice that $T\binom{a}{b}=\left(\begin{array}{l}a \\ b \\ a\end{array}\right)$. In particular, the x - and z-coordinates are the same for every vector in the range, so for example, $v=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ is not in the range.

Note that T is one-to-one but not onto.

One-to-One and Onto Transformations

Define

$$
A=\left(\begin{array}{ccc}
1 & -1 & 2 \\
-2 & 2 & -4
\end{array}\right) \quad T(x)=A x
$$

so $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$. Is T one-to-one? Is it onto?
The reduced row echelon form of A is

$$
\left(\begin{array}{ccc}
1 & -1 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

which does not have a pivot in every row or in every column. Hence T is neither one-to-one nor onto.

```
[interactive]
```


Summary

- A transformation T is one-to-one if $T(x)=b$ has at most one solution, for every b in \mathbf{R}^{m}.
- A transformation T is onto if $T(x)=b$ has at least one solution, for every b in \mathbf{R}^{m}.
- A matrix transformation with matrix A is one-to-one if and only if the columns of A are linearly independent, if and only if A has a pivot in every column.
- A matrix transformation with matrix A is onto if and only if the columns of A span \mathbf{R}^{m}, if and only if A has a pivot in every row.
- Two of the most basic questions one can ask about a transformation is whether it is one-to-one or onto.

