Chapter 4

Determinants

Section 4.1

Determinants: Definition

Orientation

Recall: This course is about learning to:

- Solve the matrix equation $A x=b$ We've said most of what we'll say about this topic now.
- Solve the matrix equation $A x=\lambda x$ (eigenvalue problem) We are now aiming at this.
- Almost solve the equation $A x=b$

This will happen later.
The next topic is determinants.

This is a completely magical function that takes a square matrix and gives you a number.

It is a very complicated function-the formula for the determinant of a 10×10 matrix has $3,628,800$ summands-so instead of writing down the formula, we'll give other ways to compute it.

Today is mostly about the theory of the determinant; in the next lecture we will focus on computation.

A Definition of Determinant

Definition

The determinant is a function

determinants are only for square matrices!

$$
\operatorname{det}:\{n \times n \text { matrices }\} \longrightarrow \mathbf{R}
$$

with the following properties:

1. If you do a row replacement on a matrix, the determinant doesn't change.
2. If you scale a row by c, the determinant is multiplied by c.
3. If you swap two rows of a matrix, the determinant is multiplied by -1 .
4. $\operatorname{det}\left(I_{n}\right)=1$.

Example:

$$
\overbrace{d}^{\operatorname{det}=7}
$$

$$
\begin{aligned}
& \left(\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right) \underset{R_{1}}{R_{1}} \longleftrightarrow R_{2},\left(\begin{array}{ll}
1 & 4 \\
2 & 1
\end{array}\right) \\
& \underset{\substack{R_{2} \\
\text { mumumun } \\
R_{2}-2 R_{1}}}{\left(\begin{array}{cc}
1 & 4 \\
0 & -7
\end{array}\right)} \\
& \xrightarrow[R_{2}=R_{2} \div-7]{R_{2} \div\left(\begin{array}{ll}
1 & 4 \\
0 & 1
\end{array}\right)} \\
& \left.\underset{\substack{R_{1}=R_{1}-4 R_{2} \\
\text { mumumun }}}{\substack{1 \\
0}} \begin{array}{l}
0 \\
0
\end{array}\right)
\end{aligned}
$$

A Definition of Determinant

Definition

The determinant is a function

determinants are only for square matrices!

det: $\{n \times n$ matrices $\} \longrightarrow \mathbf{R}$
with the following properties:

1. If you do a row replacement on a matrix, the determinant doesn't change.
2. If you scale a row by c, the determinant is multiplied by c.
3. If you swap two rows of a matrix, the determinant is multiplied by -1 .
4. $\operatorname{det}\left(I_{n}\right)=1$.

This is a definition because it tells you how to compute the determinant: row reduce!

It's not at all obvious that you get the same determinant if you row reduce in two different ways, but this is magically true!

Special Cases

Special Case 1
If A has a zero row, then $\operatorname{det}(A)=0$.

Why?

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 0 \\
7 & 8 & 9
\end{array}\right) \stackrel{R_{2}=-R_{2}}{\text { mumm }}\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 0 \\
7 & 8 & 9
\end{array}\right)
$$

The determinant of the second matrix is negative the determinant of the first (property 3), so

$$
\operatorname{det}\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 0 \\
7 & 8 & 9
\end{array}\right)=-\operatorname{det}\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 0 \\
7 & 8 & 9
\end{array}\right)
$$

This implies the determinant is zero.

Special Cases

Special Case 2

If A is upper-triangular, then the determinant is the product of the diagonal entries:

$$
\operatorname{det}\left(\begin{array}{ccc}
a & \star & \star \\
0 & b & \star \\
0 & 0 & c
\end{array}\right)=a b c .
$$

Upper-triangular means the only nonzero entries are on or above the diagonal.
Why?

- If one of the diagonal entries is zero, then the matrix has fewer than n pivots, so the RREF has a row of zeros. (Row operations don't change whether the determinant is zero.)
- Otherwise,

Computing Determinants

Theorem

Let A be a square matrix. Suppose you do some number of row operations on A to get a matrix B in row echelon form. Then

$$
\operatorname{det}(A)=(-1)^{r} \frac{(\text { product of the diagonal entries of } B)}{(\text { product of the scaling factors })}
$$

where r is the number of row swaps.
Why? Since B is in REF, it is upper-triangular, so its determinant is the product of its diagonal entries. You changed the determinant by $(-1)^{r}$ and the product of the scaling factors when going from A to B.

Remark

This is generally the fastest way to compute a determinant of a large matrix, either by hand or by computer.
Row reduction is $O\left(n^{3}\right)$; cofactor expansion (next time) is $O(n!) \sim O\left(n^{n} \sqrt{n}\right)$.
This is important in real life, when you're usually working with matrices with a gazillion columns.

Computing Determinants

Example

$$
\begin{aligned}
& \left(\begin{array}{ccc}
0 & -7 & -4 \\
2 & 4 & 6 \\
3 & 7 & -1
\end{array}\right) \quad \underset{\sim}{R_{1}} \underset{\sim}{\longleftrightarrow} R_{2}, ~\left(\begin{array}{ccc}
2 & 4 & 6 \\
0 & -7 & -4 \\
3 & 7 & -1
\end{array}\right) \quad r=1 \\
& \begin{array}{l}
R_{1}=R_{1} \div 2 \\
\text { munumu }
\end{array}\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -7 & -4 \\
3 & 7 & -1
\end{array}\right) \quad \begin{array}{l}
r=1 \\
\text { scaling factors }=\frac{1}{2}
\end{array} \\
& \begin{array}{c}
R_{3}=R_{3}-3 R_{1} \\
\text { munumun }
\end{array}\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -7 & -4 \\
0 & 1 & -10
\end{array}\right) \quad \begin{array}{l}
r=1 \\
\text { scaling factors }=\frac{1}{2}
\end{array} \\
& \underset{\text { munumu }}{R_{2} \longleftrightarrow R_{3}}\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & -10 \\
0 & -7 & -4
\end{array}\right) \quad \begin{array}{l}
r=2 \\
\text { scaling factors }=\frac{1}{2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \Longrightarrow \operatorname{det}\left(\begin{array}{ccc}
0 & -7 & -4 \\
1 & 4 & 6 \\
3 & 7 & -1
\end{array}\right)=(-1)^{2} \frac{1 \cdot 1 \cdot-74}{1 / 2}=-148 \text {. }
\end{aligned}
$$

Computing Determinants

2×2 Example

Let's compute the determinant of $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, a general 2×2 matrix.

- If $a=0$, then

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}
0 & b \\
c & d
\end{array}\right)=-\operatorname{det}\left(\begin{array}{ll}
c & d \\
0 & b
\end{array}\right)=-b c .
$$

- Otherwise,

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & =a \cdot \operatorname{det}\left(\begin{array}{cc}
1 & b / a \\
c & d
\end{array}\right)=a \cdot \operatorname{det}\left(\begin{array}{cc}
1 & b / a \\
0 & d-c \cdot b / a
\end{array}\right) \\
& =a \cdot 1 \cdot(d-b c / a)=a d-b c
\end{aligned}
$$

In both cases, the determinant magically turns out to be

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

Poll

True or false:
(a) Row operations can change the determinant of a matrix.
(b) Row operations can change whether the determinant of a matrix is equal to zero.
(a) True: scaling and row swaps change the determinant by a nonzero number and by -1 , respectively.
(b) False: all row operations multiply the determinant by a nonzero number.

Determinants and Invertibility

Theorem
A square matrix A is invertible if and only if $\operatorname{det}(A)$ is nonzero.

Why?

- If A is invertible, then its reduced row echelon form is the identity matrix, which has determinant equal to 1 .
- If A is not invertible, then its reduced row echelon form has a zero row, hence has zero determinant.
- Doing row operations doesn't change whether the determinant is zero.

Determinants and Products

Theorem
If A and B are two $n \times n$ matrices, then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)
$$

Why? If B is invertible, we can define

$$
f(A)=\frac{\operatorname{det}(A B)}{\operatorname{det}(B)}
$$

Note $f\left(I_{n}\right)=\operatorname{det}\left(I_{n} B\right) / \operatorname{det}(B)=1$. Check that f satisfies the same properties as det with respect to row operations. So

$$
\operatorname{det}(A)=f(A)=\frac{\operatorname{det}(A B)}{\operatorname{det}(B)} \Longrightarrow \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

What about if B is not invertible?
Theorem
If A is invertible, then $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.
Why? $I_{n}=A B \Longrightarrow 1=\operatorname{det}\left(I_{n}\right)=\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Transposes

Review

Recall: The transpose of an $m \times n$ matrix A is the $n \times m$ matrix A^{T} whose rows are the columns of A. In other words, the ij entry of A^{T} is $a_{j i}$.

$$
\left(\begin{array}{cc}
A \\
a_{11} & a_{12} \\
a_{21} & a_{13} \\
a_{22} & a_{23}
\end{array}\right) \text { mum }\left(\begin{array}{c}
A^{T} \\
a_{11} \\
a_{21} \\
a_{12} \\
a_{22} \\
a_{13}
\end{array} a_{23} .\right) ~
$$

Determinants and Transposes

Theorem
If A is a square matrix, then

$$
\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)
$$

where A^{T} is the transpose of A.
Example: $\operatorname{det}\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right)$.
As a consequence, det behaves the same way with respect to column operations as row operations.

Corollary an immediate consequence of a theorem
If A has a zero column, then $\operatorname{det}(A)=0$.

Corollary
The determinant of a lower-triangular matrix is the product of the diagonal entries.
(The transpose of a lower-triangular matrix is upper-triangular.)

Section 4.3

Determinants and Volumes

Determinants and Volumes

Now we discuss a completely different description of (the absolute value of) the determinant, in terms of volumes.

This is a crucial component of the change-of-variables formula in multivariable calculus.
The columns $v_{1}, v_{2}, \ldots, v_{n}$ of an $n \times n$ matrix A give you n vectors in \mathbf{R}^{n}.
These determine a parallelepiped P.

Theorem

Let A be an $n \times n$ matrix with columns $v_{1}, v_{2}, \ldots, v_{n}$, and let P be the parallelepiped determined by A. Then

$$
\text { (volume of } P)=|\operatorname{det}(A)|
$$

Determinants and Volumes

Theorem
Let A be an $n \times n$ matrix with columns $v_{1}, v_{2}, \ldots, v_{n}$, and let P be the parallelepiped determined by A. Then

$$
\text { (volume of } P)=|\operatorname{det}(A)| \text {. }
$$

Sanity check: the volume of P is zero \Longleftrightarrow the columns are linearly dependent (P is "flat") \Longleftrightarrow the matrix A is not invertible.

Why is the theorem true? You only have to check that the volume behaves the same way under row operations as $|\operatorname{det}|$ does.

Note that the volume of the unit cube (the parallelepiped defined by the identity matrix) is 1 .

Determinants and Volumes

Examples in \mathbf{R}^{2}

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{cc}
1 & -2 \\
0 & 3
\end{array}\right)=3 \\
& \operatorname{det}\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right)=-2
\end{aligned}
$$

(Should the volume really be -2 ?)

$$
\operatorname{det}\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right)=0
$$

Determinants and Volumes

Theorem

Let A be an $n \times n$ matrix with columns $v_{1}, v_{2}, \ldots, v_{n}$, and let P be the parallelepiped determined by A. Then

$$
\text { (volume of } P)=|\operatorname{det}(A)| \text {. }
$$

This is even true for curvy shapes, in the following sense.

Theorem

Let A be an $n \times n$ matrix, and let $T(x)=A x$. If S is any region in \mathbf{R}^{n}, then

$$
\text { (volume of } T(S))=|\operatorname{det}(A)|(\text { volume of } S) \text {. }
$$

If S is the unit cube, then $T(S)$ is the parallelepiped defined by the columns of A, since the columns of A are $T\left(e_{1}\right), T\left(e_{2}\right), \ldots, T\left(e_{n}\right)$. In this case, the second theorem is the same as the first.

Determinants and Volumes

Theorem

Let A be an $n \times n$ matrix, and let $T(x)=A x$. If S is any region in \mathbf{R}^{n}, then

$$
\text { (volume of } T(S))=|\operatorname{det}(A)| \text { (volume of } S)
$$

For curvy shapes, you break S up into a bunch of tiny cubes. Each one is scaled by $|\operatorname{det}(A)| ;$ then you use calculus to reduce to the previous situation!

Determinants and Volumes

Example

Theorem

Let A be an $n \times n$ matrix, and let $T(x)=A x$. If S is any region in \mathbf{R}^{n}, then

$$
\text { (volume of } T(S))=|\operatorname{det}(A)|(\text { volume of } S) \text {. }
$$

Example: Let S be the unit disk in \mathbf{R}^{2}, and let $T(x)=A x$ for

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) .
$$

Note that $\operatorname{det}(A)=3$.

Summary

Magica Properties of the Determinant

(1 . There is one and only one function det: $\{$ square matrices $\} \rightarrow \mathbf{R}$ satisfying the properties (1)-(4) on the second slide.
2. A is invertible if and only if $\operatorname{det}(A) \neq 0$.
3. The determinant of an upper- or lower-triangular matrix is the product of the diagonal entries.
4. If we row reduce A to row echelon form B using r swaps, then

$$
\operatorname{det}(A)=(-1)^{r} \frac{(\text { product of the diagonal entries of } B)}{(\text { product of the scaling factors) }}
$$

5. $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B) \quad$ and $\quad \operatorname{det}\left(A^{-1}\right)=\operatorname{det}(A)^{-1}$.
6. $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
7. $|\operatorname{det}(A)|$ is the volume of the parallelepiped defined by the columns of A.
8. If A is an $n \times n$ matrix with transformation $T(x)=A x$, and S is a subset of \mathbf{R}^{n}, then the volume of $T(S)$ is $|\operatorname{det}(A)|$ times the volume of S. (Even for curvy shapes S.)
