Chapter 5

Eigenvalues and Eigenvectors
Section 5.1

Eigenvalues and Eigenvectors
Motivation

In a population of rabbits:
1. half of the newborn rabbits survive their first year;
2. of those, half survive their second year;
3. their maximum life span is three years;
4. rabbits have 0, 6, 8 baby rabbits in their three years, respectively.

If you know the population one year, what is the population the next year?

\[f_n = \text{first-year rabbits in year } n \]
\[s_n = \text{second-year rabbits in year } n \]
\[t_n = \text{third-year rabbits in year } n \]

The rules say:
\[
\begin{pmatrix}
0 & 6 & 8 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
\end{pmatrix}
\begin{pmatrix}
f_n \\
s_n \\
t_n \\
\end{pmatrix}
=
\begin{pmatrix}
f_{n+1} \\
s_{n+1} \\
t_{n+1} \\
\end{pmatrix}.
\]

Let \(A = \begin{pmatrix}
0 & 6 & 8 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
\end{pmatrix} \) and \(v_n = \begin{pmatrix}
f_n \\
s_n \\
t_n \\
\end{pmatrix} \). Then \(A v_n = v_{n+1} \).
If you know v_0, what is v_{10}?

$$v_{10} = Av_9 = AAv_8 = \cdots = A^{10}v_0.$$

This makes it easy to compute examples by computer:

<table>
<thead>
<tr>
<th>v_0</th>
<th>v_{10}</th>
<th>v_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>30189</td>
<td>61316</td>
</tr>
<tr>
<td>7</td>
<td>7761</td>
<td>15095</td>
</tr>
<tr>
<td>9</td>
<td>1844</td>
<td>3881</td>
</tr>
<tr>
<td>1</td>
<td>9459</td>
<td>19222</td>
</tr>
<tr>
<td>2</td>
<td>2434</td>
<td>4729</td>
</tr>
<tr>
<td>3</td>
<td>577</td>
<td>1217</td>
</tr>
<tr>
<td>4</td>
<td>28856</td>
<td>58550</td>
</tr>
<tr>
<td>7</td>
<td>7405</td>
<td>14428</td>
</tr>
<tr>
<td>8</td>
<td>1765</td>
<td>3703</td>
</tr>
</tbody>
</table>

What do you notice about these numbers?

1. Eventually, each segment of the population doubles every year: $Av_n = v_{n+1} = 2v_n$.

2. The ratios get close to $(16 : 4 : 1)$:

$$v_n = \text{(scalar)} \cdot \begin{pmatrix} 16 \\ 4 \\ 1 \end{pmatrix}.$$

Translation: 2 is an eigenvalue, and $\begin{pmatrix} 16 \\ 4 \\ 1 \end{pmatrix}$ is an eigenvector!
Eigenvectors and Eigenvalues

Definition
Let A be an $n \times n$ matrix.

Eigenvalues and eigenvectors are only for square matrices.

1. An **eigenvector** of A is a nonzero vector v in \mathbb{R}^n such that $Av = \lambda v$, for some λ in \mathbb{R}. In other words, Av is a multiple of v.

2. An **eigenvalue** of A is a number λ in \mathbb{R} such that the equation $Av = \lambda v$ has a nontrivial solution.

If $Av = \lambda v$ for $v \neq 0$, we say λ is the **eigenvalue for** v, and v is an **eigenvector for** λ.

Note: Eigenvectors are by definition nonzero. Eigenvalues may be equal to zero.

This is the most important definition in the course.
Verifying Eigenvectors

Example

\[
A = \begin{pmatrix}
0 & 6 & 8 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0
\end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix}
16 \\
4 \\
1
\end{pmatrix}
\]

Multiply:

\[
A\mathbf{v} = \begin{pmatrix}
0 & 6 & 8 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0
\end{pmatrix} \begin{pmatrix}
16 \\
4 \\
1
\end{pmatrix} = \begin{pmatrix}
32 \\
8 \\
2
\end{pmatrix} = 2\mathbf{v}
\]

Hence \(\mathbf{v} \) is an eigenvector of \(A \), with eigenvalue \(\lambda = 2 \).

Example

\[
A = \begin{pmatrix}
2 & 2 \\
-4 & 8
\end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix}
1 \\
1
\end{pmatrix}
\]

Multiply:

\[
A\mathbf{v} = \begin{pmatrix}
2 & 2 \\
-4 & 8
\end{pmatrix} \begin{pmatrix}
1 \\
1
\end{pmatrix} = \begin{pmatrix}
4 \\
4
\end{pmatrix} = 4\mathbf{v}
\]

Hence \(\mathbf{v} \) is an eigenvector of \(A \), with eigenvalue \(\lambda = 4 \).
Poll

Which of the vectors

A. \(\begin{pmatrix} 1 \\ 1 \end{pmatrix} \) B. \(\begin{pmatrix} 1 \\ -1 \end{pmatrix} \) C. \(\begin{pmatrix} -1 \\ 1 \end{pmatrix} \) D. \(\begin{pmatrix} 2 \\ 1 \end{pmatrix} \) E. \(\begin{pmatrix} 0 \\ 0 \end{pmatrix} \)

are eigenvectors of the matrix \(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \)?

What are the eigenvalues?

\[
\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \text{eigenvector with eigenvalue 2}
\]
\[
\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 0 \begin{pmatrix} 1 \\ -1 \end{pmatrix} \quad \text{eigenvector with eigenvalue 0}
\]
\[
\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = 0 \begin{pmatrix} -1 \\ 1 \end{pmatrix} \quad \text{eigenvector with eigenvalue 0}
\]
\[
\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix} \quad \text{not an eigenvector}
\]
\[
\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \text{is never an eigenvector}
\]
Verifying Eigenvalues

Question: Is \(\lambda = 3 \) an eigenvalue of \(A = \begin{pmatrix} 2 & -4 \\ -1 & -1 \end{pmatrix} \)?

In other words, does \(Av = 3v \) have a nontrivial solution?

\[\text{... does } Av - 3v = 0 \text{ have a nontrivial solution?} \]
\[\text{... does } (A - 3I)v = 0 \text{ have a nontrivial solution?} \]

We know how to answer that! Row reduction!

\[
A - 3I = \begin{pmatrix} 2 & -4 \\ -1 & -1 \end{pmatrix} - 3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & -4 \\ -1 & -4 \end{pmatrix}
\]

Row reduce:

\[
\begin{pmatrix} -1 & -4 \\ -1 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 \\ 0 & 0 \end{pmatrix}
\]

Parametric form: \(x = -4y \); parametric vector form: \(
\begin{pmatrix} x \\ y \end{pmatrix} = y \begin{pmatrix} -4 \\ 1 \end{pmatrix}.
\)

Does there exist an eigenvector with eigenvalue \(\lambda = 3 \)? Yes! Any nonzero multiple of \(\begin{pmatrix} -4 \\ 1 \end{pmatrix} \). Check:

\[
\begin{pmatrix} 2 & -4 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} -4 \\ 1 \end{pmatrix} = \begin{pmatrix} -12 \\ 3 \end{pmatrix} = 3 \begin{pmatrix} -4 \\ 1 \end{pmatrix}.
\]
Definition

Let A be an $n \times n$ matrix and let λ be an eigenvalue of A. The λ-**eigenspace** of A is the set of all eigenvectors of A with eigenvalue λ, plus the zero vector:

$$
\lambda\text{-eigenspace} = \{ \mathbf{v} \in \mathbb{R}^n \mid A\mathbf{v} = \lambda \mathbf{v} \}
$$

$$
= \{ \mathbf{v} \in \mathbb{R}^n \mid (A - \lambda I)\mathbf{v} = 0 \}
$$

$$
= \text{Nul}(A - \lambda I).
$$

Since the λ-eigenspace is a null space, it is a **subspace** of \mathbb{R}^n.

How do you find a basis for the λ-eigenspace? Parametric vector form!
Eigenspaces

Example

Find a basis for the 3-eigenspace of

$$A = \begin{pmatrix} 2 & -4 \\ -1 & -1 \end{pmatrix}.$$

We have to solve the matrix equation $A - 3I_2 = 0$.

$$A - 3I_2 = \begin{pmatrix} 2 & -4 \\ -1 & -1 \end{pmatrix} - 3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & -4 \\ -1 & -4 \end{pmatrix}$$

$$\text{RREF} \begin{pmatrix} 1 & 4 \\ 0 & 0 \end{pmatrix}$$

parametric form $x = -4y$

parametric vector form $\begin{pmatrix} x \\ y \end{pmatrix} = y \begin{pmatrix} -4 \\ 1 \end{pmatrix}$

basis $\left\{ \begin{pmatrix} -4 \\ 1 \end{pmatrix} \right\}$.
Find a basis for the 2-eigenspace of

\[A = \begin{pmatrix} 7/2 & 0 & 3 \\ -3/2 & 2 & -3 \\ -3/2 & 0 & -1 \end{pmatrix}. \]

\[A - 2I = \begin{pmatrix} 3/2 & 0 & 3 \\ -3 & 0 & -3 \\ -3 & 0 & -3 \end{pmatrix} \]

Row reduce \[\rightarrow \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \]

Parametric form \[x = -2z \]

Parametric vector form \[\begin{pmatrix} x \\ y \\ z \end{pmatrix} = y \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} \]

Basis \[\left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} \right\}. \]
Eigenspaces

Example

Find a basis for the $\frac{1}{2}$-eigenspace of

$$A = \begin{pmatrix} 7/2 & 0 & 3 \\ -3/2 & 2 & -3 \\ -3/2 & 0 & -1 \end{pmatrix}.$$

$$A - \frac{1}{2} I = \begin{pmatrix} 3 & 0 & 3 \\ -3/2 & 3 & -3 \\ 0 & -3/2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

row reduce

parametric form

$$\begin{cases} x = -z \\ y = z \end{cases}$$

parametric vector form

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = z \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$

basis

$$\begin{Bmatrix} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \end{Bmatrix}.$$
Eigenspaces
Example: picture

\[
A = \begin{pmatrix}
\frac{7}{2} & 0 & 3 \\
-\frac{3}{2} & 2 & -3 \\
-\frac{3}{2} & 0 & -1 \\
\end{pmatrix}.
\]

We computed bases for the \(2\)-eigenspace and the \(\frac{1}{2}\)-eigenspace:

\[
\text{2-eigenspace: } \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} \right\}
\]
\[
\text{1/2-eigenspace: } \left\{ \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \right\}
\]

Hence the \(2\)-eigenspace is a plane and the \(\frac{1}{2}\)-eigenspace is a line.
Let A be an $n \times n$ matrix and let λ be a number.

1. λ is an eigenvalue of A if and only if $(A - \lambda I)x = 0$ has a nontrivial solution, if and only if $\text{Nul}(A - \lambda I) \neq \{0\}$.

2. In this case, finding a basis for the λ-eigenspace of A means finding a basis for $\text{Nul}(A - \lambda I)$ as usual, i.e. by finding the parametric vector form for the general solution to $(A - \lambda I)x = 0$.

3. The eigenvectors with eigenvalue λ are the nonzero elements of $\text{Nul}(A - \lambda I)$, i.e. the nontrivial solutions to $(A - \lambda I)x = 0$.
We’ve seen that finding eigenvectors for a given eigenvalue is a row reduction problem.

Finding all of the eigenvalues of a matrix is not a row reduction problem! We’ll see how to do it in general next time. For now:

Fact: The eigenvalues of a triangular matrix are the diagonal entries.

Why? \(\text{Nul}(A - \lambda I) \neq \{0\} \) if and only if \(A - \lambda I \) is not invertible, if and only if \(\det(A - \lambda I) = 0 \).

\[
\begin{pmatrix}
3 & 4 & 1 & 2 \\
0 & -1 & -2 & 7 \\
0 & 0 & 8 & 12 \\
0 & 0 & 0 & -3 \\
\end{pmatrix}
- \lambda I_4 =
\begin{pmatrix}
3 - \lambda & 4 & 1 & 2 \\
0 & -1 - \lambda & -2 & 7 \\
0 & 0 & 8 - \lambda & 12 \\
0 & 0 & 0 & -3 - \lambda \\
\end{pmatrix}
\]

The determinant is \((3 - \lambda)(-1 - \lambda)(8 - \lambda)(-3 - \lambda)\), which is zero exactly when \(\lambda = 3, -1, 8, \) or \(-3\).
A Matrix is Invertible if and only if Zero is not an Eigenvalue

Fact: A is invertible if and only if 0 is not an eigenvalue of A.

Why?

0 is an eigenvalue of A \iff $Ax = 0x$ has a nontrivial solution
\iff $Ax = 0$ has a nontrivial solution
\iff A is not invertible.

invertible matrix theorem
Eigenvectors with Distinct Eigenvalues are Linearly Independent

Fact: If v_1, v_2, \ldots, v_k are eigenvectors of A with distinct eigenvalues $\lambda_1, \ldots, \lambda_k$, then $\{v_1, v_2, \ldots, v_k\}$ is linearly independent.

Why? If $k = 2$, this says v_2 can’t lie on the line through v_1. But the line through v_1 is contained in the λ_1-eigenspace, and v_2 does not have eigenvalue λ_1.

In general: see §5.1 (or work it out for yourself; it’s not too hard).

Consequence: An $n \times n$ matrix has at most n distinct eigenvalues.
We have a couple of new ways of saying “A is invertible” now:

The Invertible Matrix Theorem
Let A be a square $n \times n$ matrix, and let $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ be the linear transformation $T(x) = Ax$. The following statements are equivalent.

1. A is invertible.
2. T is invertible.
3. The reduced row echelon form of A is I_n.
4. A has n pivots.
5. $Ax = 0$ has no solutions other than the trivial one.
6. $	ext{Nul}(A) = \{0\}$.
7. nullity(A) = 0.
8. The columns of A are linearly independent.
9. The columns of A form a basis for \mathbb{R}^n.
10. T is one-to-one.
11. $Ax = b$ is consistent for all b in \mathbb{R}^n.
12. $Ax = b$ has a unique solution for each b in \mathbb{R}^n.
13. The columns of A span \mathbb{R}^n.
14. $	ext{Col } A = \mathbb{R}^m$.
15. $	ext{dim Col } A = m$.
16. rank $A = m$.
17. T is onto.
18. There exists a matrix B such that $AB = I_n$.
19. There exists a matrix B such that $BA = I_n$.
20. The determinant of A is *not* equal to zero.
21. The number 0 is *not* an eigenvalue of A.

Summary

- **Eigenvectors** and **eigenvalues** are the most important concepts in this course.

- Eigenvectors are by definition nonzero; eigenvalues may be zero.

- The eigenvalues of a triangular matrix are the diagonal entries.

- A matrix is invertible if and only if zero is not an eigenvalue.

- Eigenvectors with distinct eigenvalues are linearly independent.

- The λ-eigenspace is the set of all λ-eigenvectors, plus the zero vector.

- You can compute a basis for the λ-eigenspace by finding the parametric vector form of the solutions of $(A - \lambda I_n)x = 0$.