
Section 5.4

Diagonalization



Important note about this section

In this section we discuss what it means for an n × n matrix A to be
diagonalizable. This term is sometimes called “diagonalizable over R.”

We emphasize that any time we mention the term “diagonalizable” for a
matrix A in Math 1553, all matrices involved are assumed to have only real
numbers and the eigenvalues of A will all be real numbers.

(Side note: there is also a concept called “diagonalizable over C” which
generalizes the concept of diagonalizability to cases where the matrix in
question may have some eigenvalues that are not real numbers. We will discuss
complex eigenvalues in section 5.5, but we do not cover diagonalizability over C
in Math 1553.)



Motivation
Difference equations

Many real-word linear algebra problems have the form:

v1 = Av0, v2 = Av1 = A2v0, v3 = Av2 = A3v0, . . . vn = Avn−1 = Anv0.

This is called a difference equation.

Our toy example about rabbit populations had this form.

The question is, what happens to vn as n→∞?

I Taking powers of diagonal matrices is easy!

I Taking powers of diagonalizable matrices is still easy!

I Diagonalizing a matrix is an eigenvalue problem.



Powers of Diagonal Matrices

If D is diagonal, then Dn is also diagonal; its diagonal entries are the nth
powers of the diagonal entries of D:

D =

(
2 0
0 −1

)
, D2 =

(
4 0
0 1

)
, D3 =

(
8 0
0 −1

)
, . . . Dn =

(
2n 0
0 (−1)n

)
.

D =

−1 0 0
0 1

2
0

0 0 1
3

 , D2 =

 1 0 0
0 1

4
0

0 0 1
9

 , D3 =

−1 0 0
0 1

8
0

0 0 1
27

 ,

. . . Dn =

 (−1)n 0 0
0 1

2n
0

0 0 1
3n





Powers of Matrices that are Similar to Diagonal Ones

What if A is not diagonal?

Example

Let A =

(
1/2 3/2
3/2 1/2

)
. Compute An, using

A = CDC−1 for C =

(
1 1
1 −1

)
and D =

(
2 0
0 −1

)
.

We compute:

A2 = (CDC−1)(CDC−1) = CD(C−1C)DC−1 = CDIDC−1 = CD2C−1

A3 = (CDC−1)(CD2C−1) = CD(C−1C)D2C−1 = CDID2C−1 = CD3C−1

...

An = CDnC−1

Therefore

An =

(
1 1
1 −1

)(
2n 0
0 (−1)n

)
1

−2

(
−1 −1
−1 1

)
=

1

2

(
2n + (−1)n 2n + (−1)n+1

2n + (−1)n+1 2n + (−1)n

)
.

Closed formula in terms of n:
easy to compute



Similar Matrices

Definition
Two n × n matrices A and B (whose entries are real numbers) are similar if
there exists an invertible n × n matrix C (whose entries are real numbers) such
that A = CBC−1.

Fact: if two matrices are similar then so are their powers:

A = CBC−1 =⇒ An = CBnC−1.

Fact: if A is similar to B and B is similar to D, then A is similar to D.

A = CBC−1, B = EDE−1 =⇒ A = C(EDE−1)C−1 = (CE)D(CE)−1.



Diagonalizable Matrices

Definition
An n × n matrix A is diagonalizable if it is similar to a diagonal matrix:

A = CDC−1 for D diagonal.

If A = CDC−1 for D =


d11 0 · · · 0
0 d22 · · · 0
...

...
. . .

...
0 0 · · · dnn

 then

Ak = CDKC−1 = C


dk

11 0 · · · 0
0 dk

22 · · · 0
...

...
. . .

...
0 0 · · · dk

nn

C−1.

Important

So diagonalizable matrices are easy to raise to any power.



Diagonalization

The Diagonalization Theorem

An n × n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors in Rn.

In this case, A = CDC−1 for

C =

 | | |
v1 v2 · · · vn
| | |

 D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 ,

where v1, v2, . . . , vn are linearly independent eigenvectors, and λ1, λ2, . . . , λn are
the corresponding eigenvalues (in the same order).

Corollary

An n × n matrix with n distinct real eigenvalues is diagonalizable.

a theorem that follows easily from another theorem

The Corollary is true because eigenvectors with distinct eigenvalues are always
linearly independent. We will see later that a diagonalizable matrix need not
have n distinct eigenvalues though.



Diagonalization

The Diagonalization Theorem

An n × n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors in Rn.

In this case, A = CDC−1 for

C =

 | | |
v1 v2 · · · vn
| | |

 D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 ,

where v1, v2, . . . , vn are linearly independent eigenvectors, and λ1, λ2, . . . , λn are
the corresponding eigenvalues (in the same order).

Note that the decomposition is not unique: you can reorder the eigenvalues
and eigenvectors.

A =

 | |
v1 v2

| |

(λ1 0
0 λ2

) | |
v1 v2

| |

−1

=

 | |
v2 v1

| |

(λ2 0
0 λ1

) | |
v2 v1

| |

−1



Diagonalization
Easy example

Question: What does the Diagonalization Theorem say about the matrix

A =

 1 0 0
0 2 0
0 0 3

?

This is a triangular matrix, so the eigenvalues are the diagonal entries 1, 2, 3.

A diagonal matrix just scales the coordinates by the diagonal entries, so we can
take our eigenvectors to be the unit coordinate vectors e1, e2, e3. Hence the
Diagonalization Theorem says 1 0 0

0 2 0
0 0 3

 =

 1 0 0
0 1 0
0 0 1

 1 0 0
0 2 0
0 0 3

 1 0 0
0 1 0
0 0 1

 .

It doesn’t give us anything new because the matrix was already diagonal!

A diagonal matrix D is diagonalizable! It is similar to itself:

D = InDI
−1
n .



Diagonalization
Example

Problem: Diagonalize A =

(
1/2 3/2
3/2 1/2

)
.

The characteristic polynomial is

f (λ) = λ2 − Tr(A)λ+ det(A) = λ2 − λ− 2 = (λ+ 1)(λ− 2).

Therefore the eigenvalues are −1 and 2. Let’s compute some eigenvectors:

(A + 1I )x = 0 ⇐⇒
(

3/2 3/2
3/2 3/2

)
x = 0

rref
(

1 1
0 0

)
x = 0

The parametric form is x = −y , so v1 =
(−1

1

)
is an eigenvector with eigenvalue −1.

(A− 2I )x = 0 ⇐⇒
(
−3/2 3/2
3/2 −3/2

)
x = 0

rref
(

1 −1
0 0

)
x = 0

The parametric form is x = y , so v2 =
(

1
1

)
is an eigenvector with eigenvalue 2.

The eigenvectors v1, v2 are linearly independent, so the Diagonalization
Theorem says

A = CDC−1 for C =

(
−1 1
1 1

)
D =

(
−1 0
0 2

)
.



Diagonalization
Another example

Problem: Diagonalize A =

 4 −3 0
2 −1 0
1 −1 1

.

The characteristic polynomial is

f (λ) = det(A− λI ) = −λ3 + 4λ2 − 5λ+ 2 = −(λ− 1)2(λ− 2).

Therefore the eigenvalues are 1 and 2, with respective multiplicities 2 and 1.
Let’s compute the 1-eigenspace:

(A− I )x = 0 ⇐⇒

 3 −3 0
2 −2 0
1 −1 0

 x = 0
rref

 1 −1 0
0 0 0
0 0 0

 x = 0

The parametric vector form is

x = y

y = y

z = z
=⇒

x
y
z

 = y

1
1
0

+ z

0
0
1


Hence a basis for the 1-eigenspace is

B1 =
{
v1, v2

}
where v1 =

1
1
0

 , v2 =

0
0
1

 .



Diagonalization
Another example, continued

Problem: Diagonalize A =

 4 −3 0
2 −1 0
1 −1 1

.

Now let’s compute the 2-eigenspace:

(A− 2I )x = 0 ⇐⇒

 2 −3 0
2 −3 0
1 −1 −1

 x = 0
rref

 1 0 −3
0 1 −2
0 0 0

 x = 0

The parametric form is x = 3z , y = 2z , so an eigenvector with eigenvalue 2 is

v3 =

3
2
1

 .

The eigenvectors v1, v2, v3 are linearly independent: v1, v2 form a basis for the
1-eigenspace, and v3 is not contained in the 1-eigenspace. Therefore the
Diagonalization Theorem says

A = CDC−1 for C =

 1 0 3
1 0 2
0 1 1

 D =

 1 0 0
0 1 0
0 0 2

 .

Note: In this case, there are three linearly independent eigenvectors, but only
two distinct eigenvalues.



Diagonalization
A non-diagonalizable matrix

Problem: Show that A =

(
1 1
0 1

)
is not diagonalizable.

This is an upper-triangular matrix, so the only eigenvalue is 1. Let’s compute
the 1-eigenspace:

(A− I )x = 0 ⇐⇒
(

0 1
0 0

)
x = 0.

This is row reduced, but has only one free variable x ; a basis for the
1-eigenspace is {

(
1
0

)
}. So all eigenvectors of A are multiples of

(
1
0

)
.

Conclusion: A has only one linearly independent eigenvector, so by the “only
if” part of the diagonalization theorem, A is not diagonalizable.



Poll

Which of the following matrices are diagonalizable, and why?

A.

(
1 2
0 1

)
B.

(
1 2
0 2

)
C.

(
2 1
0 2

)
D.

(
2 0
0 2

)
Poll

Matrix A is not diagonalizable: its only eigenvalue is 1, and its 1-eigenspace is
spanned by

(
1
0

)
.

Similarly, matrix C is not diagonalizable.

Matrix B is diagonalizable because it is a 2× 2 matrix with distinct eigenvalues.

Matrix D is already diagonal!



Diagonalization
Procedure

How to diagonalize a matrix A:

1. Find the eigenvalues of A using the characteristic polynomial.

2. For each eigenvalue λ of A, compute a basis Bλ for the λ-eigenspace.

3. If there are fewer than n total vectors in the union of all of the eigenspace
bases Bλ, then the matrix is not diagonalizable.

4. Otherwise, the n vectors v1, v2, . . . , vn in your eigenspace bases are linearly
independent, and A = CDC−1 for

C =

 | | |
v1 v2 · · · vn
| | |

 and D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 ,

where λi is the eigenvalue for vi .



Diagonalization
Proof

Why is the Diagonalization Theorem true?

A diagonalizable implies A has n linearly independent eigenvectors: Suppose
A = CDC−1, where D is diagonal with diagonal entries λ1, λ2, . . . , λn. Let
v1, v2, . . . , vn be the columns of C . They are linearly independent because C is
invertible. So Cei = vi , hence C−1vi = ei .

Avi = CDC−1vi = CDei = C(λiei ) = λiCei = λivi .

Hence vi is an eigenvector of A with eigenvalue λi . So the columns of C form
n linearly independent eigenvectors of A, and the diagonal entries of D are the
eigenvalues.

A has n linearly independent eigenvectors implies A is diagonalizable: Suppose
A has n linearly independent eigenvectors v1, v2, . . . , vn, with eigenvalues
λ1, λ2, . . . , λn. Let C be the invertible matrix with columns v1, v2, . . . , vn. Let
D = C−1AC .

Dei = C−1ACei = C−1Avi = C−1(λivi ) = λiC
−1vi = λiei .

Hence D is diagonal, with diagonal entries λ1, λ2, . . . , λn. Solving D = C−1AC
for A gives A = CDC−1.



Algebraic Multiplicity

Definition
The (algebraic) multiplicity of an eigenvalue λ is its multiplicity as a root of
the characteristic polynomial.

This is not a very interesting notion yet. It will become interesting when we
also define geometric multiplicity later.

Example

In the rabbit population matrix, f (λ) = −(λ− 2)(λ+ 1)2, so the algebraic
multiplicity of the eigenvalue 2 is 1, and the algebraic multiplicity of the
eigenvalue −1 is 2.

Example

In the matrix

(
5 2
2 1

)
, f (λ) = (λ− (3− 2

√
2))(λ− (3 + 2

√
2)), so the

algebraic multiplicity of 3 + 2
√

2 is 1, and the algebraic multiplicity of 3− 2
√

2
is 1.



Non-Distinct Eigenvalues

Definition
Let λ be an eigenvalue of a square matrix A. The geometric multiplicity of λ
is the dimension of the λ-eigenspace.

Theorem
Let λ be an eigenvalue of a square matrix A. Then

1 ≤ (the geometric multiplicity of λ) ≤ (the algebraic multiplicity of λ).

The proof is beyond the scope of this course.

Corollary

Let λ be an eigenvalue of a square matrix A. If the algebraic multiplicity of λ is
1, then the geometric multiplicity is also 1: the eigenspace is a line.

The Diagonalization Theorem (Alternate Form)

Let A be an n × n matrix. The following are equivalent:

1. A is diagonalizable.

2. The sum of the geometric multiplicities of the eigenvalues of A equals n.

3. The sum of the algebraic multiplicities of the eigenvalues of A equals n,
and for each eigenvalue, the geometric multiplicity equals the algebraic
multiplicity.



Non-Distinct Eigenvalues
Examples

Example

If A has n distinct eigenvalues, then the algebraic multiplicity of each equals 1,
hence so does the geometric multiplicity, and therefore A is diagonalizable.

For example, A =

(
1/2 3/2
3/2 1/2

)
has eigenvalues −1 and 2, so it is diagonalizable.

Example

The matrix A =

 4 −3 0
2 −1 0
1 −1 1

 has characteristic polynomial

f (λ) = −(λ− 1)2(λ− 2).

The algebraic multiplicities of 1 and 2 are 2 and 1, respectively. They sum to 3.

We showed before that the geometric multiplicity of 1 is 2 (the 1-eigenspace
has dimension 2). The eigenvalue 2 automatically has geometric multiplicity 1.

Hence the geometric multiplicities add up to 3, so A is diagonalizable.



Non-Distinct Eigenvalues
Another example

Example

The matrix A =

(
1 1
0 1

)
has characteristic polynomial f (λ) = (λ− 1)2.

It has one eigenvalue 1 of algebraic multiplicity 2.

We showed before that the geometric multiplicity of 1 is 1 (the 1-eigenspace
has dimension 1).

Since the geometric multiplicity is smaller than the algebraic multiplicity, the
matrix is not diagonalizable.



Summary

I A matrix A is diagonalizable if it is similar to a diagonal matrix D:
A = CDC−1.

I It is easy to take powers of diagonalizable matrices: Ar = CD rC−1.

I An n × n matrix is diagonalizable if and only if it has n linearly
independent eigenvectors v1, v2, . . . , vn, in which case A = CDC−1 for

C =

 | | |
v1 v2 · · · vn
| | |

 D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 .

I If A has n distinct eigenvalues, then it is diagonalizable.

I The geometric multiplicity of an eigenvalue λ is the dimension of the
λ-eigenspace.

I 1 ≤ (geometric multiplicity) ≤ (algebraic multiplicity).

I An n × n matrix is diagonalizable if and only if the sum of the geometric
multiplicities is n.


