Supplemental problems: §1.2, §1.3

1. Is the matrix below in reduced row echelon form?
 \[
 \begin{pmatrix}
 1 & 1 & 0 & -3 & 1 \\
 0 & 0 & 1 & -1 & 5 \\
 0 & 0 & 0 & 0 & 0
 \end{pmatrix}
 \]

2. Put an augmented matrix into reduced row echelon form to solve the system
 \[
 x_1 - 2x_2 - 9x_3 + x_4 = 3 \\
 4x_2 + 8x_3 - 24x_4 = 4.
 \]

3. a) Row reduce the following matrices to reduced row echelon form.

 b) If these are augmented matrices for a linear system (with the last column being after the = sign), then which are inconsistent? Which have a unique solution?
 \[
 \begin{pmatrix}
 1 & 2 & 3 & 4 \\
 4 & 5 & 6 & 7 \\
 6 & 7 & 8 & 9
 \end{pmatrix} \quad \begin{pmatrix}
 1 & 3 & 5 & 7 \\
 3 & 5 & 7 & 9 \\
 5 & 7 & 9 & 1
 \end{pmatrix} \quad \begin{pmatrix}
 3 & -4 & 2 & 0 \\
 -8 & 12 & -4 & 0 \\
 -6 & 8 & -1 & 0
 \end{pmatrix}
 \]

4. We can use linear algebra to find a polynomial that fits given data, in the same way that we found a circle through three specified points in the §1.2 Webwork.
 Is there a degree-three polynomial \(P(x) \) whose graph passes through the points \((-2, 6), (-1, 4), (1, 6), \) and \((2, 22)\)? If so, how many degree-three polynomials have a graph through those four points? We answer this question in steps below.

 a) If \(P(x) = a_0 + a_1x + a_2x^2 + a_3x^3 \) is a degree-three polynomial passing through the four points listed above, then \(P(-2) = 6, \ P(-1) = 4, \ P(1) = 6, \) and \(P(2) = 22. \) Write a system of four equations which we would solve to find \(a_0, \ a_1, a_2, \) and \(a_3. \)

 b) Write the augmented matrix to represent this system and put it into reduced row-echelon form. Is the system consistent? How many solutions does it have?