Supplemental problems: §1.2, §1.3

1. Is the matrix below in reduced row echelon form?

$$\begin{pmatrix} 1 & 1 & 0 & -3 & 1 \\ 0 & 0 & 1 & -1 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

2. Put an augmented matrix into reduced row echelon form to solve the system

$$x_1 - 2x_2 - 9x_3 + x_4 = 3$$

$$4x_2 + 8x_3 - 24x_4 = 4.$$

- **3.** a) Row reduce the following matrices to reduced row echelon form.
 - **b)** If these are augmented matrices for a linear system (with the last column being after the = sign), then which are inconsistent? Which have a *unique* solution?

(1)	2	3	4)	(1)	3	5	7)	(3	-4	2	0)
4	5	6	7	3	5	7	9	-8	12	-4	0
6	7	8	9)	5 \	7	9	1)	\−6	8	-1	0)

4. We can use linear algebra to find a polynomial that fits given data, in the same way that we found a circle through three specified points in the §1.2 Webwork.

Is there a degree-three polynomial P(x) whose graph passes through the points (-2, 6), (-1, 4), (1, 6), and (2, 22)? If so, how many degree-three polynomials have a graph through those four points? We answer this question in steps below.

- a) If $P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$ is a degree-three polynomial passing through the four points listed above, then P(-2) = 6, P(-1) = 4, P(1) = 6, and P(2) = 22. Write a system of four equations which we would solve to find a_0 , a_1 , a_2 , and a_3 .
- **b)** Write the augmented matrix to represent this system and put it into reduced row-echelon form. Is the system consistent? How many solutions does it have?