## Supplemental problems: §§2.6, 2.7, 2.9, 3.1

1. Circle $\mathbf{T}$ if the statement is always true, and circle $\mathbf{F}$ otherwise. You do not need to explain your answer.
a) If $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis for a subspace $V$ of $\mathbf{R}^{n}$, then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a linearly independent set.
b) The solution set of a consistent matrix equation $A x=b$ is a subspace.
c) A translate of a span is a subspace.

## Solution.

a) True. If $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly dependent then $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is automatically linearly dependent, which is impossible since $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis for a subspace.
b) False. this is true if and only if $b=0$, i.e., the equation is homogeneous, in which case the solution set is the null space of $A$.
c) False. A subspace must contain 0 .
2. True or false (justify your answer). Answer true if the statement is always true. Otherwise, answer false.
a) There exists a $3 \times 5$ matrix with rank 4 .
b) If $A$ is an $9 \times 4$ matrix with a pivot in each column, then

$$
\operatorname{Nul} A=\{0\} .
$$

c) There exists a $4 \times 7$ matrix $A$ such that nullity $A=5$.
d) If $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for $\mathbf{R}^{4}$, then $n=4$.

## Solution.

a) False. The rank is the dimension of the column space, which is a subspace of $\mathbf{R}^{3}$, hence has dimension at most 3 .
b) True.
c) True. For instance,

$$
A=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

d) True. Any basis of $\mathbf{R}^{4}$ has 4 vectors.
3. Find bases for the column space and the null space of

$$
A=\left(\begin{array}{ccccc}
0 & 1 & -3 & 1 & 0 \\
1 & -1 & 8 & -7 & 1 \\
-1 & -2 & 1 & 4 & -1
\end{array}\right)
$$

## Solution.

The RREF of $(A \mid 0)$ is

$$
\left(\begin{array}{rrrrr|r}
1 & 0 & 5 & -6 & 1 & 0 \\
0 & 1 & -3 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),
$$

so $x_{3}, x_{4}, x_{5}$ are free, and

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
-5 x_{3}+6 x_{4}-x_{5} \\
3 x_{3}-x_{4} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=x_{3}\left(\begin{array}{c}
-5 \\
3 \\
1 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
6 \\
-1 \\
0 \\
1 \\
0
\end{array}\right)+x_{5}\left(\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
1
\end{array}\right) .
$$

Therefore, a basis for $\mathrm{Nul} A$ is $\left\{\left(\begin{array}{c}-5 \\ 3 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}6 \\ -1 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right)\right\}$.
To find a basis for $\operatorname{Col} A$, we use the pivot columns as they were written in the original matrix $A$, not its RREF. These are the first two columns:

$$
\left\{\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right)\right\} .
$$

4. Find a basis for the subspace $V$ of $\mathbf{R}^{4}$ given by

$$
V=\left\{\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right) \text { in } \mathbf{R}^{4} \mid x+2 y-3 z+w=0\right\}
$$

## Solution.

$V$ is $\mathrm{Nul} A$ for the $1 \times 4$ matrix $A=\left(\begin{array}{llll}1 & 2 & -3 & 1\end{array}\right)$. The augmented matrix $(A \mid 0)=$ $\left(\begin{array}{llll}1 & 2 & -3 & 1 \mid 0\end{array}\right)$ gives $x=-2 y+3 z-w$ where $y, z, w$ are free variables. The parametric vector form for the solution set to $A x=0$ is

$$
\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{c}
-2 y+3 z-w \\
y \\
z \\
w
\end{array}\right)=y\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right)+z\left(\begin{array}{l}
3 \\
0 \\
1 \\
0
\end{array}\right)+w\left(\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right) .
$$

Therefore, a basis for $V$ is

$$
\left\{\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
3 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right)\right\}
$$

5. a) True or false: If $A$ is an $m \times n$ matrix and $\operatorname{Nul}(A)=\mathbf{R}^{n}$, then $\operatorname{Col}(A)=\{0\}$.
b) Give an example of $2 \times 2$ matrix whose column space is the same as its null space.
c) True or false: For some $m$, we can find an $m \times 10$ matrix $A$ whose column span has dimension 4 and whose solution set for $A x=0$ has dimension 5 .

## Solution.

a) If $\operatorname{Nul}(A)=\mathbf{R}^{n}$ then $A x=0$ for all $x$ in $\mathbf{R}^{n}$, so the only element in $\operatorname{Col}(A)$ is $\{0\}$. Alternatively, the rank theorem says
$\operatorname{dim}(\operatorname{Col} A)+\operatorname{dim}(\operatorname{Nul} A)=n \Longrightarrow \operatorname{dim}(\operatorname{Col} A)+n=n \Longrightarrow \operatorname{dim}(\operatorname{Col} A)=0 \Longrightarrow \operatorname{Col} A=\{0\}$.
b) Take $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. Its null space and column space are $\operatorname{Span}\left\{\binom{1}{0}\right\}$.
c) False. The rank theorem says that the dimensions of the column space $(\operatorname{Col} A)$ and homogeneous solution space $(\operatorname{Nul} A)$ add to 10 , no matter what $m$ is.
6. Suppose $V$ is a 3-dimensional subspace of $\mathbf{R}^{5}$ containing $\left(\begin{array}{c}1 \\ -4 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ 0 \\ -3 \\ 1 \\ 0\end{array}\right)$, and $\left(\begin{array}{l}9 \\ 8 \\ 1 \\ 0 \\ 1\end{array}\right)$. Is $\left\{\left(\begin{array}{c}1 \\ -4 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ 0 \\ -3 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}9 \\ 8 \\ 1 \\ 0 \\ 1\end{array}\right)\right\}$ a basis for $V$ ? Justify your answer.

## Solution.

Yes. The Basis Theorem says that since we know $\operatorname{dim}(V)=3$, our three vectors will form a basis for $V$ if and only if they are linearly independent.

Call the vectors $v_{1}, v_{2}, v_{3}$. It is very little work to show that the matrix $A=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$ has a pivot in every column, so the vectors are linearly independent.
7. a) Write a $2 \times 2$ matrix $A$ with rank 2 , and draw pictures of $\operatorname{Nul} A$ and $\operatorname{Col} A$.
$\operatorname{Col} A=$

b) Write a $2 \times 2$ matrix $B$ with rank 1 , and draw pictures of $\operatorname{Nul} B$ and $\operatorname{Col} B$.

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \quad \mathrm{Nul} B=
$$

c) Write a $2 \times 2$ matrix $C$ with $\operatorname{rank} 0$, and draw pictures of $\operatorname{Nul} C$ and $\operatorname{Col} C$.

$$
A=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \quad \operatorname{Nul} C=
$$

$\operatorname{Col} C=$

(In the grids, the dot is the origin.)
8. For each matrix $A$, describe what the transformation $T(x)=A x$ does to $\mathbf{R}^{3}$ geometrically.
a) $\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
b) $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$.
c) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)$
d) $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$

## Solution.

a) We compute

$$
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-x \\
y \\
z
\end{array}\right) .
$$

This is the reflection over the $y z$-plane.
b) We compute

$$
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
z
\end{array}\right) .
$$

This is projection onto the $z$-axis.
c) We compute

$$
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
x \\
-y \\
z
\end{array}\right) .
$$

This is the reflection over the $x z$-plane.
d)

$$
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
y \\
x \\
0
\end{array}\right) .
$$

This is projection onto the $x y$-plane, followed by reflection over the line $y=x$.

