Supplemental problems: §§2.6, 2.7, 2.9, 3.1

1. Circle \mathbf{T} if the statement is always true, and circle \mathbf{F} otherwise. You do not need to explain your answer.
a) If $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis for a subspace V of \mathbf{R}^{n}, then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a linearly independent set.
b) The solution set of a consistent matrix equation $A x=b$ is a subspace.
c) A translate of a span is a subspace.
2. True or false (justify your answer). Answer true if the statement is always true. Otherwise, answer false.
a) There exists a 3×5 matrix with rank 4 .
b) If A is an 9×4 matrix with a pivot in each column, then

$$
\operatorname{Nul} A=\{0\} .
$$

c) There exists a 4×7 matrix A such that nullity $A=5$.
d) If $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for \mathbf{R}^{4}, then $n=4$.
3. Find bases for the column space and the null space of

$$
A=\left(\begin{array}{ccccc}
0 & 1 & -3 & 1 & 0 \\
1 & -1 & 8 & -7 & 1 \\
-1 & -2 & 1 & 4 & -1
\end{array}\right)
$$

4. Find a basis for the subspace V of \mathbf{R}^{4} given by

$$
V=\left\{\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right) \text { in } \mathbf{R}^{4} \mid x+2 y-3 z+w=0\right\}
$$

5. a) True or false: If A is an $m \times n$ matrix and $\operatorname{Nul}(A)=\mathbf{R}^{n}$, then $\operatorname{Col}(A)=\{0\}$.
b) Give an example of 2×2 matrix whose column space is the same as its null space.
c) True or false: For some m, we can find an $m \times 10$ matrix A whose column span has dimension 4 and whose solution set for $A x=0$ has dimension 5 .
6. Suppose V is a 3-dimensional subspace of \mathbf{R}^{5} containing $\left(\begin{array}{c}1 \\ -4 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ 0 \\ -3 \\ 1 \\ 0\end{array}\right)$, and $\left(\begin{array}{l}9 \\ 8 \\ 1 \\ 0 \\ 1\end{array}\right)$.

Is $\left\{\left(\begin{array}{c}1 \\ -4 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ 0 \\ -3 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}9 \\ 8 \\ 1 \\ 0 \\ 1\end{array}\right)\right\}$ a basis for V ? Justify your answer.
7. a) Write a 2×2 matrix A with rank 2 , and draw pictures of $\operatorname{Nul} A$ and $\operatorname{Col} A$.

$$
\begin{aligned}
& A= \\
& \int \operatorname{Nul} A= \\
& \operatorname{Col} A=
\end{aligned}
$$

b) Write a 2×2 matrix B with rank 1 , and draw pictures of $\operatorname{Nul} B$ and $\operatorname{Col} B$.

$$
\begin{aligned}
& B=\left(\begin{array}{ll}
\text { Nul } B= & \square \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
& \\
& \\
& \\
& \\
\hline
\end{array}\right. \\
& \operatorname{Col} B=
\end{aligned}
$$

c) Write a 2×2 matrix C with rank 0 , and draw pictures of $\mathrm{Nul} C$ and $\operatorname{Col} C$.
(In the grids, the dot is the origin.)
8. For each matrix A, describe what the transformation $T(x)=A x$ does to \mathbf{R}^{3} geometrically.
a) $\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
b) $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$.
c) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)$
d) $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$

