Supplemental problems: §§2.6, 2.7, 2.9, 3.1

- 1. Circle **T** if the statement is always true, and circle **F** otherwise. You do not need to explain your answer.
 - a) If $\{v_1, v_2, v_3, v_4\}$ is a basis for a subspace V of \mathbf{R}^n , then $\{v_1, v_2, v_3\}$ is a linearly independent set.
 - **b)** The solution set of a consistent matrix equation Ax = b is a subspace.
 - c) A translate of a span is a subspace.
- **2.** True or false (justify your answer). Answer true if the statement is *always* true. Otherwise, answer false.
 - a) There exists a 3×5 matrix with rank 4.
 - **b)** If A is an 9×4 matrix with a pivot in each column, then

$$Nul A = \{0\}.$$

- c) There exists a 4×7 matrix *A* such that nullity A = 5.
- **d)** If $\{v_1, v_2, \dots, v_n\}$ is a basis for \mathbb{R}^4 , then n = 4.
- **3.** Find bases for the column space and the null space of

$$A = \begin{pmatrix} 0 & 1 & -3 & 1 & 0 \\ 1 & -1 & 8 & -7 & 1 \\ -1 & -2 & 1 & 4 & -1 \end{pmatrix}.$$

4. Find a basis for the subspace V of \mathbb{R}^4 given by

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \text{ in } \mathbf{R}^4 \mid x + 2y - 3z + w = 0 \right\}.$$

- **5.** a) True or false: If *A* is an $m \times n$ matrix and Nul(*A*) = \mathbb{R}^n , then Col(*A*) = $\{0\}$.
 - **b)** Give an example of 2×2 matrix whose column space is the same as its null space.
 - **c)** True or false: For some m, we can find an $m \times 10$ matrix A whose column span has dimension 4 and whose solution set for Ax = 0 has dimension 5.
- **6.** Suppose *V* is a 3-dimensional subspace of \mathbb{R}^5 containing $\begin{pmatrix} 1 \\ -4 \\ 0 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ -3 \\ 1 \\ 0 \end{pmatrix}$, and $\begin{pmatrix} 9 \\ 8 \\ 1 \\ 0 \\ 1 \end{pmatrix}$.

Is
$$\left\{ \begin{pmatrix} 1\\ -4\\ 0\\ 0\\ 0 \end{pmatrix}, \begin{pmatrix} 1\\ 0\\ -3\\ 1\\ 0 \end{pmatrix}, \begin{pmatrix} 9\\ 8\\ 1\\ 0\\ 1 \end{pmatrix} \right\}$$
 a basis for V ? Justify your answer.

7. a) Write a 2×2 matrix A with rank 2, and draw pictures of NulA and ColA.

b) Write a 2×2 matrix B with **rank** 1, and draw pictures of Nul B and Col B.

$$B = \begin{pmatrix} & & \\ & &$$

c) Write a 2×2 matrix C with rank 0, and draw pictures of Nul C and Col C.

$$C = \left(\begin{array}{c} \\ \\ \end{array}\right) \quad \text{Nul } C = \left(\begin{array}{c} \\ \\ \end{array}\right) \quad \text{Col } C = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

(In the grids, the dot is the origin.)

8. For each matrix *A*, describe what the transformation T(x) = Ax does to \mathbb{R}^3 geometrically.

a)
$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 b) $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. c) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ d) $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$