Supplemental problems: §§2.6, 2.7, 2.9, 3.1

1. Circle T if the statement is always true, and circle F otherwise. You do not need to explain your answer.
 a) If \(\{v_1, v_2, v_3, v_4\} \) is a basis for a subspace \(V \) of \(\mathbb{R}^n \), then \(\{v_1, v_2, v_3\} \) is a linearly independent set.
 b) The solution set of a consistent matrix equation \(Ax = b \) is a subspace.
 c) A translate of a span is a subspace.

2. True or false (justify your answer). Answer true if the statement is always true. Otherwise, answer false.
 a) There exists a \(3 \times 5 \) matrix with rank 4.
 b) If \(A \) is an \(9 \times 4 \) matrix with a pivot in each column, then \(\text{Nul}(A) = \{0\} \).
 c) There exists a \(4 \times 7 \) matrix \(A \) such that nullity \(A = 5 \).
 d) If \(\{v_1, v_2, \ldots, v_n\} \) is a basis for \(\mathbb{R}^4 \), then \(n = 4 \).

3. Find bases for the column space and the null space of
 \[
 A = \begin{pmatrix}
 0 & 1 & -3 & 1 & 0 \\
 1 & -1 & 8 & -7 & 1 \\
 -1 & -2 & 1 & 4 & -1
 \end{pmatrix}.
 \]

4. Find a basis for the subspace \(V \) of \(\mathbb{R}^4 \) given by
 \[
 V = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \in \mathbb{R}^4 \mid x + 2y - 3z + w = 0 \right\}.
 \]

5. a) True or false: If \(A \) is an \(m \times n \) matrix and \(\text{Null}(A) = \mathbb{R}^n \), then \(\text{Col}(A) = \{0\} \).
 b) Give an example of a \(2 \times 2 \) matrix whose column space is the same as its null space.
 c) True or false: For some \(m \), we can find an \(m \times 10 \) matrix \(A \) whose column span has dimension 4 and whose solution set for \(Ax = 0 \) has dimension 5.

6. Suppose \(V \) is a 3-dimensional subspace of \(\mathbb{R}^5 \) containing
 \[
 \begin{pmatrix}
 1 \\
 -4 \\
 0
 \end{pmatrix},
 \begin{pmatrix}
 1 \\
 0 \\
 -3
 \end{pmatrix}, \text{ and } \begin{pmatrix}
 9 \\
 8 \\
 1
 \end{pmatrix}.
 \]
Is \{ \begin{pmatrix} 1 \\ -4 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -3 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 9 \\ 8 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \} a basis for \(V \)? Justify your answer.

7. a) Write a \(2 \times 2 \) matrix \(A \) with rank 2, and draw pictures of \(\text{Nul} A \) and \(\text{Col} A \).

\[
A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
\]

\[
\text{Nul} A = \begin{pmatrix} \ast & \ast \\ \ast & \ast \end{pmatrix}
\]

\[
\text{Col} A = \begin{pmatrix} \ast & \ast \end{pmatrix}
\]

b) Write a \(2 \times 2 \) matrix \(B \) with rank 1, and draw pictures of \(\text{Nul} B \) and \(\text{Col} B \).

\[
B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
\]

\[
\text{Nul} B = \begin{pmatrix} \ast & \ast \\ \ast & \ast \end{pmatrix}
\]

\[
\text{Col} B = \begin{pmatrix} \ast \end{pmatrix}
\]

c) Write a \(2 \times 2 \) matrix \(C \) with rank 0, and draw pictures of \(\text{Nul} C \) and \(\text{Col} C \).

\[
C = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
\]

\[
\text{Nul} C = \begin{pmatrix} \ast & \ast \\ \ast & \ast \end{pmatrix}
\]

\[
\text{Col} C = \begin{pmatrix} \ast \end{pmatrix}
\]

(In the grids, the dot is the origin.)

8. For each matrix \(A \), describe what the transformation \(T(x) = Ax \) does to \(\mathbb{R}^3 \) geometrically.

a) \(\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \)

b) \(\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \)

c) \(\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \)

d) \(\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \)