Supplemental problems: §3.2

1. Let A be a 3×4 matrix with column vectors $v_{1}, v_{2}, v_{3}, v_{4}$, and suppose $v_{2}=2 v_{1}-3 v_{4}$. Consider the matrix transformation $T(x)=A x$.
a) Is it possible that T is one-to-one? If yes, justify why. If no, find distinct vectors v and w so that $T(v)=T(w)$.
b) Is it possible that T is onto? Justify your answer.

Solution.

a) From the linear dependence condition we were given, we get

$$
-2 v_{1}+v_{2}+3 v_{4}=0
$$

The corresponding vector equation is just

$$
\left(\begin{array}{llll}
v_{1} & v_{2} & v_{3} & v_{4}
\end{array}\right)\left(\begin{array}{c}
-2 \\
1 \\
0 \\
3
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), \quad \text { so } \quad A\left(\begin{array}{c}
-2 \\
1 \\
0 \\
3
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Therefore, $v=\left(\begin{array}{c}-2 \\ 1 \\ 0 \\ 3\end{array}\right)$ and $w=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)$ both satisfy $A v=A w=0$, so T cannot be one-to-one.
b) Yes. If $\left\{v_{1}, v_{3}, v_{4}\right\}$ is linearly independent then A will have a pivot in every row and T will be onto. Such a matrix A is

$$
A=\left(\begin{array}{cccc}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -3 & 0 & 1
\end{array}\right)
$$

2. a) Which of the following are onto transformations? (Check all that apply.)
$\square T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$, reflection over the $x y$-plane
$\square T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$, projection onto the $x y$-plane
$\square T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$, project onto the $x y$-plane, forget the z-coordinate
$\square T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$, scale the x-direction by 2
b) Let A be a square matrix and let $T(x)=A x$. Which of the following guarantee that T is onto? (Check all that apply.)
$\square T$ is one-to-one

$$
\square A x=0 \text { is consistent }
$$

3. Find all real numbers h so that the transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ given by

$$
T(v)=\left(\begin{array}{ccc}
-1 & 0 & 2-h \\
h & 0 & 3
\end{array}\right) v
$$

is onto.

Solution.

We row-reduce A to find when it will have a pivot in every row:

$$
\left(\begin{array}{ccc}
-1 & 0 & 2-h \\
h & 0 & 3
\end{array}\right) \xrightarrow{R_{2}=R_{2}+h R_{1}}\left(\begin{array}{ccc}
-1 & 0 & 2-h \\
0 & 0 & 3+h(2-h)
\end{array}\right) .
$$

The matrix has a pivot in every row unless

$$
3+h(2-h)=0, \quad h^{2}-2 h-3=0, \quad(h-3)(h+1)=0 .
$$

Therefore, T is onto as long as $h \neq 3$ and $h \neq-1$.

Supplemental problems: §3.3

1. Circle \mathbf{T} if the statement is always true, and circle \mathbf{F} otherwise.
a) $\mathbf{T} \quad \mathbf{F} \quad$ If $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is linear and $T\left(e_{1}\right)=T\left(e_{2}\right)$, then the homogeneous equation $T(x)=0$ has infinitely many solutions.
b) $\quad \mathbf{T} \quad \mathbf{F} \quad$ If $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{\mathrm{m}}$ is a one-to-one linear transformation and $m \neq n$, then T must not be onto.

Solution.

a) True. The matrix transformation $T(x)=A x$ is not one-to-one, so $A x=0$ has infinitely many solutions. For example, $e_{1}-e_{2}$ is a non-trivial solution to $A x=0$ since $A\left(e_{1}-e_{2}\right)=A e_{1}-A e_{2}=0$.
b) True. Let A be the $m \times n$ standard matrix for T. If T is both one-to-one and onto then T must have a pivot in each column and in each row, which is only possible when A is a square matrix $(m=n)$.
2. Consider $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ given by

$$
T(x, y, z)=(x, x+z, 3 x-4 y+z, x)
$$

Is T one-to-one? Justify your answer.

Solution.

One approach: We form the standard matrix A for T :

$$
A=\left(\begin{array}{lll}
T\left(e_{1}\right) & T\left(e_{2}\right) & T\left(e_{3}\right)
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 1 \\
3 & -4 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

We row-reduce A until we determine its pivot columns

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 1 \\
3 & -4 & 1 \\
1 & 0 & 0
\end{array}\right) \xrightarrow[R_{3}=R_{3}-3 R_{1}, R_{4}=R_{4}-R_{1}]{R_{2}=R_{2}-R_{1}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -4 & 1 \\
0 & 0 & 0
\end{array}\right) \xrightarrow{R_{2} \leftrightarrow R_{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -4 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) .
$$

A has a pivot in every column, so T is one-to-one.
Alternative approach: T is a linear transformation, so it is one-to-one if and only if the equation $T(x, y, z)=(0,0,0)$ has only the trivial solution. If $T(x, y, z)=(x, x+z, 3 x-4 y+z, x)=(0,0,0,0)$ then $x=0$, and

$$
\begin{aligned}
& x+z=0 \Longrightarrow 0+z=0 \Longrightarrow z=0, \text { and finally } \\
& 3 x-4 y+z=0 \Longrightarrow 0-4 y+0=0 \Longrightarrow y=0
\end{aligned}
$$

so the trivial solution $x=y=z=0$ is the only solution the homogeneous equation. Therefore, T is one-to-one.
3. Which of the following transformations T are onto? Which are one-to-one? If the transformation is not onto, find a vector not in the range. If the matrix is not one-to-one, find two vectors with the same image.
a) The transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ defined by $T(x, y, z)=(y, y)$.
b) JUST FOR FUN: Consider $T:(S m o o t h ~ f u n c t i o n s) ~ \rightarrow ~(S m o o t h ~ f u n c t i o n s) ~$ given by $T(f)=f^{\prime}$ (the derivative of f). Then T is not a transformation from any \mathbf{R}^{n} to \mathbf{R}^{m}, but it is still linear in the sense that for all smooth f and g and all scalars c (by properties of differentiation we learned in Calculus 1):

$$
\begin{gathered}
T(f+g)=T(f)+T(g) \text { since }(f+g)^{\prime}=f^{\prime}+g^{\prime} \\
T(c f)=c T(f) \text { since }(c f)^{\prime}=c f^{\prime}
\end{gathered}
$$

Is T one-to-one?

Solution.

a) This is not onto. Everything in the range of T has its first coordinate equal to its second, so there is no (x, y, z) such that $T(x, y, z)=(1,0)$. It is not one-to-one: for instance, $T(0,0,0)=(0,0)=T(0,0,1)$.
b) T is not one-to-one. If T were one-to-one, then for any smooth function b, the equation $T(f)=b$ would have at most one solution. However, note that if f and g are the functions $f(t)=t$ and $g(t)=t-1$, then f and g are different functions but their derivatives are the same, so $T(f)=T(g)$. Therefore, T is not one-to-one. It is not within the scope of Math 1553. If you find it confusing, feel free to ignore it.
4. In each case, determine whether T is linear. Briefly justify.
a) $T\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}, x_{1}+x_{2}, 1\right)$.
b) $T(x, y)=\left(y, x^{1 / 3}\right)$.
c) $T(x, y, z)=2 x-5 z$.

Solution.

a) Not linear. $T(0,0)=(0,0,1) \neq(0,0,0)$.
b) Not linear. The $x^{1 / 3}$ term gives it away. $T(0,2)=\left(0,2^{1 / 3}\right)$ but $2 T(0,1)=$ $(0,2)$.
c) Linear. In fact, $T(v)=A v$ where

$$
A=\left(\begin{array}{lll}
2 & 0 & -5
\end{array}\right) .
$$

5. The second little pig has decided to build his house out of sticks. His house is shaped like a pyramid with a triangular base that has vertices at the points $(0,0,0),(2,0,0)$, $(0,2,0)$, and $(1,1,1)$.

The big bad wolf finds the pig's house and blows it down so that the house is rotated by an angle of 45° in a counterclockwise direction about the z-axis (look downward onto the $x y$-plane the way we usually picture the plane as \mathbf{R}^{2}), and then projected onto the $x y$-plane.

In the worksheet, we found the matrix for the transformation T caused by the wolf. Geometrically describe the image of the house under T.

Solution.

Work shows that $T(x)=A x$, where

$$
A=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
T\left(e_{1}\right) & T\left(e_{2}\right) & T\left(e_{3}\right) \\
\mid & \mid & \mid
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

We know the house has been effectively destroyed, but what do its remains look like? To get an idea, let's look at what happens to the vertices.

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), \quad \frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
\sqrt{2} \\
\sqrt{2} \\
0
\end{array}\right) \\
& \frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
2 \\
0
\end{array}\right)=\left(\begin{array}{c}
-\sqrt{2} \\
\sqrt{2} \\
0
\end{array}\right) \quad \frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
\sqrt{2} \\
0
\end{array}\right) .
\end{aligned}
$$

This indicates the pyramid has been squashed into a triangle in the $x y$-plane with vertices $\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}\sqrt{2} \\ \sqrt{2} \\ 0\end{array}\right),\left(\begin{array}{c}-\sqrt{2} \\ \sqrt{2} \\ 0\end{array}\right)$. (the point $\left(\begin{array}{c}0 \\ \sqrt{2} \\ 0\end{array}\right)$ is along the top side of this triangle).

Effectively, the pyramid was rotated and then destroyed, so that its (rotated) base is all that remains.

