Supplemental problems: §3.2

1. Let A be a 3×4 matrix with column vectors v_1, v_2, v_3, v_4, and suppose $v_2 = 2v_1 - 3v_4$. Consider the matrix transformation $T(x) = Ax$.

 a) Is it possible that T is one-to-one? If yes, justify why. If no, find distinct vectors v and w so that $T(v) = T(w)$.

 b) Is it possible that T is onto? Justify your answer.

2. a) Which of the following are onto transformations? (Check all that apply.)
 - $T : \mathbb{R}^3 \to \mathbb{R}^3$, reflection over the xy-plane
 - $T : \mathbb{R}^3 \to \mathbb{R}^3$, projection onto the xy-plane
 - $T : \mathbb{R}^3 \to \mathbb{R}^2$, project onto the xy-plane, forget the z-coordinate
 - $T : \mathbb{R}^2 \to \mathbb{R}^2$, scale the x-direction by 2

 b) Let A be a square matrix and let $T(x) = Ax$. Which of the following guarantee that T is onto? (Check all that apply.)
 - T is one-to-one
 - $Ax = 0$ is consistent

3. Find all real numbers h so that the transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$ given by

 $$T(v) = \begin{pmatrix} -1 & 0 & 2-h \\ h & 0 & 3 \end{pmatrix} v$$

 is onto.
Supplemental problems: §3.3

1. Circle T if the statement is always true, and circle F otherwise.
 a) T F If $T : \mathbb{R}^n \to \mathbb{R}^n$ is linear and $T(e_1) = T(e_2)$, then the homogeneous equation $T(x) = 0$ has infinitely many solutions.
 b) T F If $T : \mathbb{R}^n \to \mathbb{R}^m$ is a one-to-one linear transformation and $m \neq n$, then T must not be onto.

2. Consider $T : \mathbb{R}^3 \to \mathbb{R}^3$ given by
 $$T(x, y, z) = (x, x + z, 3x - 4y + z, x).$$
 Is T one-to-one? Justify your answer.

3. Which of the following transformations T are onto? Which are one-to-one? If the transformation is not onto, find a vector not in the range. If the matrix is not one-to-one, find two vectors with the same image.
 a) The transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x, y, z) = (y, y)$.
 b) JUST FOR FUN: Consider $T : (\text{Smooth functions}) \to (\text{Smooth functions})$ given by $T(f) = f'$ (the derivative of f). Then T is not a transformation from any \mathbb{R}^n to \mathbb{R}^m, but it is still linear in the sense that for all smooth f and g and all scalars c (by properties of differentiation we learned in Calculus 1):
 $$T(f + g) = T(f) + T(g) \quad \text{since} \quad (f + g)' = f' + g'$$
 $$T(cf) = cT(f) \quad \text{since} \quad (cf)' = cf'.$$
 Is T one-to-one?

4. In each case, determine whether T is linear. Briefly justify.
 a) $T(x_1, x_2) = (x_1 - x_2, x_1 + x_2, 1)$.
 b) $T(x, y) = (y, x^{1/3})$.
 c) $T(x, y, z) = 2x - 5z$.

5. The second little pig has decided to build his house out of sticks. His house is shaped like a pyramid with a triangular base that has vertices at the points $(0, 0, 0)$, $(2, 0, 0)$, $(0, 2, 0)$, and $(1, 1, 1)$.
 The big bad wolf finds the pig’s house and blows it down so that the house is rotated by an angle of 45° in a counterclockwise direction about the z-axis (look downward onto the xy-plane the way we usually picture the plane as \mathbb{R}^2), and then projected onto the xy-plane.
 In the worksheet, we found the matrix for the transformation T caused by the wolf. Geometrically describe the image of the house under T.