Supplemental problems: §3.4

1. Consider $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by

$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + 2y \\ 2x + y \\ x - y \end{pmatrix}$$

and $U: \mathbb{R}^3 \to \mathbb{R}^2$ defined by first projecting onto the *xy*-plane (forgetting the *z*-coordinate), then rotating counterclockwise by 90°.

- a) Compute the standard matrices A and B for T and U, respectively.
- **b)** Compute the standard matrices for $T \circ U$ and $U \circ T$.
- c) Circle all that apply:

 $T \circ U$ is: one-to-one onto

 $U \circ T$ is: one-to-one onto

Solution.

a) We plug in the unit coordinate vectors to get

$$A = \begin{pmatrix} | & | \\ T(e_1) & T(e_2) \\ | & | \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \\ 1 & -1 \end{pmatrix}$$

and

$$B = \left(\begin{array}{ccc} | & | & | \\ U(e_1) & U(e_2) & U(e_3) \\ | & | & | \end{array}\right) = \left(\begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \end{array}\right).$$

b) The standard matrix for $T \circ U$ is

$$AB = \begin{pmatrix} 1 & 2 \\ 2 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 0 \\ 1 & -2 & 0 \\ -1 & -1 & 0 \end{pmatrix}.$$

The standard matrix for $U \circ T$ is

$$BA = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} -2 & -1 \\ 1 & 2 \end{pmatrix}.$$

- **c)** Looking at the matrices, we see that $T \circ U$ is not one-to-one or onto, and that $U \circ T$ is one-to-one and onto.
- **2.** Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation which projects onto the yz-plane and then forgets the x-coordinate, and let $U: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation of rotation counterclockwise by 60°. Their standard matrices are

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad B = \frac{1}{2} \begin{pmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix},$$

respectively.

a) Which composition makes sense? (Circle one.)

$$U \circ T$$
 $T \circ U$

b) Find the standard matrix for the transformation that you circled in (b).

Solution.

- a) Only $U \circ T$ makes sense, as the codomain of T is \mathbb{R}^2 , which is the domain of U.
- **b)** The standard matrix for $U \circ T$ is

$$BA = \frac{1}{2} \begin{pmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & -\sqrt{3} \\ 0 & \sqrt{3} & 1 \end{pmatrix}.$$

3. Find all matrices *B* that satisfy

$$\begin{pmatrix} 1 & -3 \\ -3 & 5 \end{pmatrix} B = \begin{pmatrix} -3 & -11 \\ 1 & 17 \end{pmatrix}.$$

Solution.

B must have two rows and two columns for the above to compute, so $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. We calculate

$$\begin{pmatrix} 1 & -3 \\ -3 & 5 \end{pmatrix} B = \begin{pmatrix} a - 3c & b - 3d \\ -3a + 5c & -3b + 5d \end{pmatrix}.$$

Setting this equal to $\begin{pmatrix} -3 & -11 \\ 1 & 17 \end{pmatrix}$ gives us

$$\begin{array}{c}
a - 3c = -3 \\
-3a + 5c = 1
\end{array}$$
solve
$$a = 3, c = 2$$

and

$$b-3d = -11$$
 solve $b = 1, d = 4.$

Therefore, $B = \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix}$.

4. Let T and U be the (linear) transformations below:

$$T(x_1, x_2, x_3) = (x_3 - x_1, x_2 + 4x_3, x_1, 2x_2 + x_3)$$
 $U(x_1, x_2, x_3, x_4) = (x_1 - 2x_2, x_1).$

- a) Which compositions makes sense (circle all that apply)? $U \circ T$ $T \circ U$
- **b)** Compute the standard matrix for T and for U.
- c) Compute the standard matrix for each composition that you circled in (a).

Solution.

- a) $U \circ T$ makes sense, but $T \circ U$ does not.
- **b)** Let *A* be the standard matrix for *T* and *B* be the standard matrix for *U*.

$$A = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 1 & 4 \\ 1 & 0 & 0 \\ 0 & 2 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -2 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

c) The matrix for $U \circ T$ is

$$BA = \begin{pmatrix} 1 & -2 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 & 1 \\ 0 & 1 & 4 \\ 1 & 0 & 0 \\ 0 & 2 & 1 \end{pmatrix} = \begin{pmatrix} -1 & -2 & -7 \\ -1 & 0 & 1 \end{pmatrix}.$$

- **5.** True or false (justify your answer). Answer true if the statement is *always* true. Otherwise, answer false.
 - a) If *A* and *B* are matrices and the products *AB* and *BA* are both defined, then *A* and *B* must be square matrices with the same number of rows and columns.
 - **b)** If A, B, and C are nonzero 2×2 matrices satisfying BA = CA, then B = C.
 - c) Suppose *A* is an 4×3 matrix whose associated transformation T(x) = Ax is not one-to-one. Then there must be a 3×3 matrix *B* which is not the zero matrix and satisfies AB = 0.
 - **d)** Suppose $T: \mathbb{R}^n \to \mathbb{R}^m$ and $U: \mathbb{R}^m \to \mathbb{R}^p$ are one-to-one linear transformations. Then $U \circ T$ is one-to-one. (What if U and T are not necessarily linear?)

Solution.

- a) False. For example, if *A* is any 2×3 matrix and *B* is any 3×2 matrix, then *AB* and *BA* are both defined.
- **b)** False. Take $A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, and $C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Then $BA = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ and $BC = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, but $B \neq C$.
- c) True. If T is not one-to-one then there is a non-zero vector v in \mathbb{R}^3 so that

$$A\nu = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

The 3 × 3 matrix
$$B = \begin{pmatrix} | & | & | \\ v & v & v \\ | & | & | \end{pmatrix}$$
 satisfies

d) True. Recall that a transformation S is one-to-one if S(x) = S(y) implies x = y (the same outputs implies the same inputs). Suppose that $U \circ T(x) = U \circ T(y)$. Then U(T(x)) = U(T(y)), so since U is one-to-one, we have T(x) = T(y). Since T is one-to-one, this implies x = y. Therefore, $U \circ T$ is one-to-one. Note that this argument does not use the assumption that U and T are linear transformations.

Alternative: We'll show that $U \circ T(x) = 0$ has only the trivial solution. Let A be the matrix for U and B be the matrix for T, and suppose x is a vector satisfying $(U \circ T)(x) = 0$. In terms of matrix multiplication, this is equivalent to ABx = 0. Since U is one-to-one, the only solution to Av = 0 is v = 0, so $A(Bx) = 0 \implies Bx = 0$.

Since *T* is one-to-one, we know that $Bx = 0 \implies x = 0$. Therefore, the equation $(U \circ T)(x) = 0$ has only the trivial solution.

- **6.** In each case, use geometric intuition to either give an example of a matrix with the desired properties or explain why no such matrix exists.
 - a) A 3 × 3 matrix P, which is not the identity matrix or the zero matrix, and satisfies $P^2 = P$.
 - **b)** A 2×2 matrix A satisfying $A^2 = I$.
 - c) A 2 × 2 matrix A satisfying $A^3 = -I$.

Solution.

- a) Take *P* to be the natural projection onto the *xy*-plane in \mathbf{R}^3 , so $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. If you apply *P* to a vector then the result will be within the *xy*-plane of \mathbf{R}^3 , so applying *P* a second time won't change anything, hence $P^2 = P$.
- **b)** Take *A* to be matrix for reflection across the line y = x, so $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Since *A* swaps the *x* and *y* coordinates, repeating *A* will swap them back to their original positions, so AA = I.
- c) Note that -I is the matrix that rotates counterclockwise by 180°, so we need a transformation that will give you counterclockwise rotation by 180° if you do

it three times. One such matrix is the rotation matrix for 60° counterclockwise,

$$A = \begin{pmatrix} \cos(\pi/3) & -\sin(\pi/3) \\ \sin(\pi/3) & \cos(\pi/3) \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}.$$

Another such matrix is A = -I.

Supplemental problems: §3.5-3.6

- **1.** a) Fill in: A and B are invertible $n \times n$ matrices, then the inverse of AB is .
 - **b)** If the columns of an $n \times n$ matrix Z are linearly independent, is Z necessarily invertible? Justify your answer.
 - c) If A and B are $n \times n$ matrices and ABx = 0 has a unique solution, does Ax = 0 necessarily have a unique solution? Justify your answer.

Solution.

- **a)** $(AB)^{-1} = B^{-1}A^{-1}$.
- **b)** Yes. The transformation $x \to Zx$ is one-to-one since the columns of Z are linearly independent. Thus Z has a pivot in all n columns, so Z has n pivots. Since Z also has n rows, this means that Z has a pivot in every row, so $x \to Zx$ is onto. Therefore, Z is invertible.

Alternatively, since Z is an $n \times n$ matrix whose columns are linearly independent, the Invertible Matrix Theorem says that Z is invertible.

c) Yes. Since AB is an $n \times n$ matrix and ABx = 0 has a unique solution, the Invertible Matrix Theorem says that AB is invertible. Note A is invertible and its inverse is $B(AB)^{-1}$, since these are square matrices and

$$A(B(AB)^{-1}) = AB(AB)^{-1} = I_n.$$

Since A is invertible, Ax = 0 has a unique solution by the Invertible Matrix Theorem.

2. Suppose *A* is an invertible matrix and

$$A^{-1}e_1 = \begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix}, \qquad A^{-1}e_2 = \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}, \qquad A^{-1}e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Find A.

Solution.

The columns of A^{-1} are

$$(A^{-1}e_1 \quad A^{-1}e_2 \quad A^{-1}e_3)$$
 so $A = \begin{pmatrix} 4 & 3 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

To get *A* we find $(A^{-1})^{-1}$. Row-reducing $(A^{-1} \mid I)$ eventually gives us

$$\begin{pmatrix} 1 & 0 & 0 & \frac{2}{5} & -\frac{3}{5} & 0 \\ 0 & 1 & 0 & -\frac{1}{5} & \frac{4}{5} & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}, \quad \text{so} \quad A = \begin{pmatrix} \frac{2}{5} & -\frac{3}{5} & 0 \\ -\frac{1}{5} & \frac{4}{5} & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$