Supplemental problems: Chapter 4, Determinants

1. If A is an $n \times n$ matrix, is it necessarily true that $\det(-A) = -\det(A)$? Justify your answer.

Solution.
No. Since $\det(cA) = c^n \det(A)$, we see $\det(-A) = (-1)^n \det(A)$, so $\det(-A) = \det(A)$ if n is even, and $\det(-A) = -\det(A)$ if n is odd.

2. Let A be an $n \times n$ matrix.
 a) Using cofactor expansion, explain why $\det(A) = 0$ if A has a row or a column of zeros.
 b) Using cofactor expansion, explain why $\det(A) = 0$ if A has adjacent identical columns.

Solution.
 a) If A has zeros for all entries in row i (so $a_{i1} = a_{i2} = \cdots = a_{in} = 0$), then the cofactor expansion along row i is
 $$\det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \cdots + a_{in}C_{in} = 0 \cdot C_{i1} + 0 \cdot C_{i2} + \cdots + 0 \cdot C_{in} = 0.$$
 Similarly, if A has zeros for all entries in column j, then the cofactor expansion along column j is the sum of a bunch of zeros and is thus 0.

 b) If A has identical adjacent columns, then the cofactor expansions will be identical except that one expansion’s terms for $\det(A)$ will have plus signs where the other expansion’s terms for $\det(A)$ have minus signs (due to the $(-1)^\text{power}$ factors) and vice versa.
 Therefore, $\det(A) = -\det(A)$, so $\det A = 0$.

3. Find the volume of the parallelepiped in \mathbb{R}^4 naturally determined by the vectors
 $$\begin{pmatrix} 4 \\ 1 \\ 3 \\ 8 \end{pmatrix}, \begin{pmatrix} 0 \\ 7 \\ 0 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 5 \\ -5 \\ 0 \\ 7 \end{pmatrix}.$$

Solution.
We put the vectors as columns of a matrix A and find $|\det(A)|$. For this, we expand $\det(A)$ along the third row because it only has one nonzero entry.

$$\det(A) = 3(-1)^{3+1} \cdot \det \begin{pmatrix} 0 & 5 \\ 7 & 2 & -5 \\ 3 & 1 & 7 \end{pmatrix} = 3 \cdot 5(-1)^{1+3} \det \begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} = 3(5)(1)(7-6) = 15.$$
(In the second step, we used the cofactor expansion along the first row since it had only one nonzero entry.)
The volume is $|\det(A)| = |15| = 15$.

4. Let \(A = \begin{pmatrix} -1 & 1 \\ 1 & 7 \end{pmatrix} \), and define a transformation \(T : \mathbb{R}^2 \to \mathbb{R}^2 \) by \(T(x) = Ax \). Find the area of \(T(S) \), if \(S \) is a triangle in \(\mathbb{R}^2 \) with area 2.

Solution.

\[|\det(A)|\text{Vol}(S) = |-7 - 1| \cdot 2 = 16. \]

5. Let \(A = \begin{pmatrix} 2 & -8 & 6 & 8 \\ 3 & -9 & 5 & 10 \\ -3 & 0 & 1 & -2 \\ 1 & -4 & 0 & 6 \end{pmatrix} \) and \(B = \begin{pmatrix} 0 & 1 & 5 & 4 \\ 1 & -1 & -3 & 0 \\ -1 & 0 & 5 & 4 \\ 3 & -3 & -2 & 5 \end{pmatrix} \)

a) Compute \(\det(A) \).

b) Compute \(\det(B) \).

c) Compute \(\det(AB) \).

d) Compute \(\det(A^2B^{-1}AB^2) \).

Solution.

a) Cofactor expansion would take some time, since the matrix has almost no zero entries. We use row reduction below, where \(r \) counts the row swaps and \(s \) measures the scaling factors.

\[
\begin{pmatrix}
2 & -8 & 6 & 8 \\
3 & -9 & 5 & 10 \\
-3 & 0 & 1 & -2 \\
1 & -4 & 0 & 6
\end{pmatrix}
\xrightarrow{R_1 = \frac{R_2}{2}}
\begin{pmatrix}
1 & -4 & 3 & 4 \\
3 & -9 & 5 & 10 \\
-3 & 0 & 1 & -2 \\
1 & -4 & 0 & 6
\end{pmatrix}
(r = 0, \ s = \frac{1}{2})
\]

\[
\xrightarrow{R_2 = R_2 - 3R_1}
\begin{pmatrix}
1 & -4 & 3 & 4 \\
0 & 3 & -4 & -2 \\
0 & -12 & 10 & 10 \\
0 & 0 & -3 & 2
\end{pmatrix}
(r = 0, \ s = \frac{1}{2})
\]

\[
\xrightarrow{R_3 = R_3 + 3R_1, \ R_4 = R_4 - R_3}
\begin{pmatrix}
1 & -4 & 3 & 4 \\
0 & 3 & -4 & -2 \\
0 & 0 & -6 & 2 \\
0 & 0 & -3 & 2
\end{pmatrix}
(r = 0, \ s = \frac{1}{2})
\]

\[
\xrightarrow{R_3 = R_3 + 4R_2}
\begin{pmatrix}
1 & -4 & 3 & 4 \\
0 & 3 & -4 & -2 \\
0 & 0 & -6 & 2 \\
0 & 0 & -3 & 2
\end{pmatrix}
(r = 0, \ s = \frac{1}{2})
\]

\[
\xrightarrow{R_4 = R_4 - R_2}
\begin{pmatrix}
1 & -4 & 3 & 4 \\
0 & 3 & -4 & -2 \\
0 & 0 & -6 & 2 \\
0 & 0 & 0 & 1
\end{pmatrix}
(r = 0, \ s = \frac{1}{2})
\]

\[\det(A) = (-1)^0 \frac{1 \cdot 3 \cdot (-6) \cdot 1}{1/2} = -36. \]
b) This is a complicated matrix without a lot of zeros, so we compute the determinant by row reduction. After one row swap and several row replacements, we reduce to the matrix
\[
\begin{pmatrix}
1 & -1 & -3 & 0 \\
0 & 1 & 5 & 4 \\
0 & 0 & 7 & 8 \\
0 & 0 & 0 & -3
\end{pmatrix}
\]. The determinant of this matrix is -21, so the determinant of the original matrix is 21.

c) $\det(AB) = \det(A)\det(B) = (-36)(21) = -756$.
d) $\det(A^2B^{-1}A^{-2}) = \det(A)^2\det(B)^{-1}\det(A)\det(B)^2 = \det(A)^3\det(B) = (-36)^3(21) = -979,776$.

6. If A is a 3×3 matrix and $\det(A) = 1$, what is $\det(-2A)$?

Solution.
By determinant properties, scaling one row by c multiplies the determinant by c. When we take cA for an $n \times n$ matrix A, we are multiplying each row by c. This multiplies the determinant by c a total of n times.

Thus, if A is $n \times n$, then $\det(cA) = c^n \det(A)$. Here $n = 3$, so
\[
\det(-2A) = (-2)^3\det(A) = -8 \det(A) = -8.
\]

7. a) Is there a real 2×2 matrix A that satisfies $A^4 = -I_2$? Either write such an A, or show that no such A exists.

(hint: think geometrically! The matrix $-I_2$ represents rotation by π radians).

b) Is there a real 3×3 matrix A that satisfies $A^4 = -I_3$? Either write such an A, or show that no such A exists.

Solution.
a) Yes. Just take A to be the matrix of counterclockwise rotation by $\frac{\pi}{4}$ radians:
\[
A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}.
\]

Then A^2 gives rotation c.c. by $\frac{\pi}{2}$ radians, A^3 gives rotation c.c. by $\frac{3\pi}{4}$ radians, and A^4 gives rotation c.c. by π radians, which has matrix $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = -I_2$.

b) No. If $A^4 = -I$ then
\[
[\det(A)]^4 = \det(A^4) = \det(-I) = (-1)^3 = -1.
\]
In other words, if $A^4 = -I$ then $[\det(A)]^4 = -1$, which is impossible since $\det(A)$ is a real number.

Similarly, $A^4 = -I$ is impossible if A is 5×5, 7×7, etc.
1. True or false. Answer true if the statement is always true. Otherwise, answer false.
 a) If A and B are $n \times n$ matrices and A is row equivalent to B, then A and B have the same eigenvalues.
 b) If A is an $n \times n$ matrix and its eigenvectors form a basis for \mathbb{R}^n, then A is invertible.
 c) If 0 is an eigenvalue of the $n \times n$ matrix A, then $\text{rank}(A) < n$.
 d) The diagonal entries of an $n \times n$ matrix A are its eigenvalues.
 e) If A is invertible and 2 is an eigenvalue of A, then $\frac{1}{2}$ is an eigenvalue of A^{-1}.
 f) If $\det(A) = 0$, then 0 is an eigenvalue of A.

Solution.

a) False. For instance, the matrices $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ are row equivalent, but have different eigenvalues.

b) False. For example, the zero matrix is not invertible but its eigenvectors form a basis for \mathbb{R}^n.

c) True. If $\lambda = 0$ is an eigenvalue of A then A is not invertible so its associated transformation $T(x) = Ax$ is not onto, hence $\text{rank}(A) < n$.

d) False. This is true if A is triangular, but not in general.

For example, if $A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}$ then the diagonal entries are 2 and 0 but the only eigenvalue is $\lambda = 1$, since solving the characteristic equation gives us

$(2 - \lambda)(-\lambda) - (1)(-1) = 0 \quad \lambda^2 - 2\lambda + 1 = 0 \quad (\lambda - 1)^2 = 0 \quad \lambda = 1.

e) True. Let v be an eigenvector corresponding to the eigenvalue 2.

$Av = 2v \implies A^{-1}Av = A^{-1}(2v) \implies v = 2A^{-1}v \implies \frac{1}{2}v = A^{-1}v.$

Therefore, v is an eigenvector of A^{-1} corresponding to the eigenvalue $\frac{1}{2}$.

f) True. If $\det(A) = 0$ then A is not invertible, so $Av = 0v$ has a nontrivial solution.

2. In this problem, you need not explain your answers; just circle the correct one(s).

Let A be an $n \times n$ matrix.

a) Which one of the following statements is correct?

1. An eigenvector of A is a vector v such that $Av = \lambda v$ for a nonzero scalar λ.

2. An eigenvector of A is a nonzero vector v such that $Av = \lambda v$ for a scalar λ.

3. An eigenvector of A is a nonzero scalar λ such that $Av = \lambda v$ for some vector v.

4. An eigenvector of A is a nonzero vector v such that $Av = \lambda v$ for a nonzero scalar λ.

b) Which one of the following statements is not correct?

1. An eigenvalue of A is a scalar λ such that $A - \lambda I$ is not invertible.

2. An eigenvalue of A is a scalar λ such that $(A - \lambda I)v = 0$ has a solution.

3. An eigenvalue of A is a scalar λ such that $Av = \lambda v$ for a nonzero vector v.

4. An eigenvalue of A is a scalar λ such that $\det(A - \lambda I) = 0$.

Solution.

a) Statement 2 is correct: an eigenvector must be nonzero, but its eigenvalue may be zero.

b) Statement 2 is incorrect: the solution v must be nontrivial.

3. Find a basis B for the (-1)-eigenspace of $Z = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 2 & 4 \\ 0 & 0 & -1 \end{pmatrix}$

Solution.

For $\lambda = -1$, we find $\text{Nul}(Z - \lambda I)$.

\[
\begin{pmatrix} Z - \lambda I | 0 \end{pmatrix} = \begin{pmatrix} Z + I | 0 \end{pmatrix} = \begin{pmatrix} 3 & 3 & 1 & 0 \\ 3 & 3 & 4 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.
\]

Therefore, $x = -y$, $y = y$, and $z = 0$, so

\[
\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -y \\ y \\ 0 \end{pmatrix} = y \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}.
\]

A basis is $B = \left\{ \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \right\}$. We can check to ensure $\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$ is an eigenvector with corresponding eigenvalue -1:

\[
Z \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 2 & 4 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 + 3 \\ -3 + 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = - \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}.
\]
4. Suppose A is an $n \times n$ matrix satisfying $A^2 = 0$. Find all eigenvalues of A. Justify your answer.

Solution.

If λ is an eigenvalue of A and $v \neq 0$ is a corresponding eigenvector, then

$$Av = \lambda v \implies A(Av) = A\lambda v \implies A^2v = \lambda (Av) \implies 0 = \lambda (\lambda v) \implies 0 = \lambda^2 v.$$

Since $v \neq 0$ this means $\lambda^2 = 0$, so $\lambda = 0$. This shows that 0 is the only possible eigenvalue of A.

On the other hand, $\det(A) = 0$ since $(\det(A))^2 = \det(A^2) = \det(0) = 0$, so 0 must be an eigenvalue of A. Therefore, the only eigenvalue of A is 0.

5. Match the statements (i)-(v) with the corresponding statements (a)-(e). All matrices are 3×3. There is a unique correspondence. Justify the correspondences in words.

(i) $Ax = \begin{pmatrix} 5 \\ 1 \\ 2 \end{pmatrix}$ has a unique solution.

(ii) The transformation $T(v) = Av$ fixes a nonzero vector.

(iii) A is obtained from B by subtracting the third row of B from the first row of B.

(iv) The columns of A and B are the same; except that the first, second and third columns of A are respectively the first, third, and second columns of B.

(v) The columns of A, when added, give the zero vector.

(a) 0 is an eigenvalue of A.
(b) A is invertible.
(c) $\det(A) = \det(B)$
(d) $\det(A) = -\det(B)$
(e) 1 is an eigenvalue of A.

Solution.

(i) matches with (b).

(ii) matches with (e).

(iii) matches with (c).

(iv) matches with (d).

(v) matches with (a).