Supplemental problems: Chapter 4, Determinants

1. If *A* is an $n \times n$ matrix, is it necessarily true that det(-A) = -det(A)? Justify your answer.

Solution.

No. Since $det(cA) = c^n det(A)$, we see $det(-A) = (-1)^n det(A)$, so det(-A) = det(A) if *n* is even, and det(-A) = -det(A) if *n* is odd.

- **2.** Let *A* be an $n \times n$ matrix.
 - a) Using cofactor expansion, explain why det(*A*) = 0 if *A* has a row or a column of zeros.
 - **b)** Using cofactor expansion, explain why det(A) = 0 if A has adjacent identical columns.

Solution.

a) If *A* has zeros for all entries in row *i* (so $a_{i1} = a_{i2} = \cdots = a_{in} = 0$), then the cofactor expansion along row *i* is

 $\det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in} = 0 \cdot C_{i1} + 0 \cdot C_{i2} + \dots + 0 \cdot C_{in} = 0.$

Similarly, if A has zeros for all entries in column j, then the cofactor expansion along column j is the sum of a bunch of zeros and is thus 0.

b) If *A* has identical adjacent columns, then the cofactor expansions will be identical except that one expansion's terms for det(*A*) will have plus signs where the other expansion's terms for det(*A*) have minus signs (due to the $(-1)^{\text{power}}$ factors) and vice versa.

Therefore, det(A) = -det(A), so det A = 0.

3. Find the volume of the parallelepiped in \mathbf{R}^4 naturally determined by the vectors

(4)		(0)		(0)		(5)	
1		7		2		-5	
3	,	0	,	0	,	0	ŀ
(8)		(3)		(1)		(7)	

Solution.

We put the vectors as columns of a matrix A and find $|\det(A)|$. For this, we expand $\det(A)$ along the third row because it only has one nonzero entry.

$$\det(A) = 3(-1)^{3+1} \cdot \det\begin{pmatrix} 0 & 0 & 5 \\ 7 & 2 & -5 \\ 3 & 1 & 7 \end{pmatrix} = 3 \cdot 5(-1)^{1+3} \det\begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} = 3(5)(1)(7-6) = 15.$$

(In the second step, we used the cofactor expansion along the first row since it had only one nonzero entry.)

The volume is $|\det(A)| = |15| = 15$.

4. Let $A = \begin{pmatrix} -1 & 1 \\ 1 & 7 \end{pmatrix}$, and define a transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ by T(x) = Ax. Find the area of T(S), if *S* is a triangle in \mathbb{R}^2 with area 2.

Solution.

 $|\det(A)|\operatorname{Vol}(S) = |-7-1| \cdot 2 = 16.$

5. Let

$$A = \begin{pmatrix} 2 & -8 & 6 & 8 \\ 3 & -9 & 5 & 10 \\ -3 & 0 & 1 & -2 \\ 1 & -4 & 0 & 6 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 0 & 1 & 5 & 4 \\ 1 & -1 & -3 & 0 \\ -1 & 0 & 5 & 4 \\ 3 & -3 & -2 & 5 \end{pmatrix}$$

- a) Compute det(*A*).
- **b)** Compute det(*B*).
- c) Compute det(*AB*).
- **d)** Compute det($A^2B^{-1}AB^2$).

Solution.

a) Cofactor expansion would take some time, since the matrix has almost no zero entries. We use row reduction below, where *r* counts the row swaps and *s* measures the scaling factors.

b) This is a complicated matrix without a lot of zeros, so we compute the determinant by row reduction. After one row swap and several row replacements,

we reduce to the matrix $\begin{pmatrix} 1 & -1 & -3 & 0 \\ 0 & 1 & 5 & 4 \\ 0 & 0 & 7 & 8 \\ 0 & 0 & 0 & -3 \end{pmatrix}$. The determinant of this matrix

is -21, so the determinant of the original matrix is 21.

- c) $\det(AB) = \det(A)\det(B) = (-36)(21) = -756$.
- **d)** $det(A^2B^{-1}AB^2) = det(A)^2 det(B)^{-1} det(A) det(B)^2 = det(A)^3 det(B) = (-36)^3(21) = -979,776.$
- **6.** If *A* is a 3×3 matrix and det(*A*) = 1, what is det(-2A)?

Solution.

By determinant properties, scaling one row by *c* multiplies the determinant by *c*. When we take *cA* for an $n \times n$ matrix *A*, we are multiplying *each* row by *c*. This multiplies the determinant by *c* a total of *n* times.

Thus, if *A* is $n \times n$, then det(*cA*) = c^n det(*A*). Here n = 3, so

$$\det(-2A) = (-2)^3 \det(A) = -8 \det(A) = -8.$$

7. a) Is there a real 2×2 matrix *A* that satisfies $A^4 = -I_2$? Either write such an *A*, or show that no such *A* exists.

(hint: think geometrically! The matrix $-I_2$ represents rotation by π radians).

b) Is there a real 3×3 matrix *A* that satisfies $A^4 = -I_3$? Either write such an *A*, or show that no such *A* exists.

Solution.

a) Yes. Just take A to be the matrix of counterclockwise rotation by $\frac{\pi}{4}$ radians:

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}.$$

Then A^2 gives rotation c.c. by $\frac{\pi}{2}$ radians, A^3 gives rotation c.c. by $\frac{3\pi}{4}$ radians, and A^4 gives rotation c.c. by π radians, which has matrix $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I_2$.

b) No. If $A^4 = -I$ then

$$[\det(A)]^4 = \det(A^4) = \det(-I) = (-1)^3 = -1.$$

In other words, if $A^4 = -I$ then $[\det(A)]^4 = -1$, which is impossible since $\det(A)$ is a real number.

Similarly, $A^4 = -I$ is impossible if *A* is 5×5 , 7×7 , etc.

Supplemental problems: §5.1

- **1.** True or false. Answer true if the statement is always true. Otherwise, answer false.
 - a) If *A* and *B* are $n \times n$ matrices and *A* is row equivalent to *B*, then *A* and *B* have the same eigenvalues.
 - **b)** If *A* is an $n \times n$ matrix and its eigenvectors form a basis for \mathbb{R}^n , then *A* is invertible.
 - c) If 0 is an eigenvalue of the $n \times n$ matrix A, then rank(A) < n.
 - **d)** The diagonal entries of an $n \times n$ matrix *A* are its eigenvalues.
 - e) If A is invertible and 2 is an eigenvalue of A, then $\frac{1}{2}$ is an eigenvalue of A^{-1} .
 - f) If det(A) = 0, then 0 is an eigenvalue of A.

Solution.

- a) False. For instance, the matrices $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ are row equivalent, but have different eigenvalues.
- **b)** False. For example, the zero matrix is not invertible but its eigenvectors form a basis for **R**^{*n*}.
- c) True. If $\lambda = 0$ is an eigenvalue of *A* then *A* is not invertible so its associated transformation T(x) = Ax is not onto, hence rank(*A*) < *n*.
- d) False. This is true if *A* is triangular, but not in general. For example, if $A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}$ then the diagonal entries are 2 and 0 but the only eigenvalue is $\lambda = 1$, since solving the characteristic equation gives us $(2-\lambda)(-\lambda)-(1)(-1)=0$ $\lambda^2-2\lambda+1=0$ $(\lambda-1)^2=0$ $\lambda=1$.
- e) True. Let *v* be an eigenvector corresponding to the eigenvalue 2.

$$Av = 2v \implies A^{-1}Av = A^{-1}(2v) \implies v = 2A^{-1}v \implies \frac{1}{2}v = A^{-1}v.$$

Therefore, *v* is an eigenvector of A^{-1} corresponding to the eigenvalue $\frac{1}{2}$.

- **f)** True. If det(A) = 0 then *A* is not invertible, so Av = 0v has a nontrivial solution.
- **2.** In this problem, you need not explain your answers; just circle the correct one(s). Let *A* be an $n \times n$ matrix.
 - a) Which one of the following statements is correct?
 - 1. An eigenvector of *A* is a vector *v* such that $Av = \lambda v$ for a nonzero scalar λ .

- 2. An eigenvector of *A* is a nonzero vector *v* such that $Av = \lambda v$ for a scalar λ .
- 3. An eigenvector of *A* is a nonzero scalar λ such that $Av = \lambda v$ for some vector *v*.
- 4. An eigenvector of *A* is a nonzero vector *v* such that $Av = \lambda v$ for a nonzero scalar λ .
- b) Which one of the following statements is not correct?
 - 1. An eigenvalue of *A* is a scalar λ such that $A \lambda I$ is not invertible.
 - 2. An eigenvalue of *A* is a scalar λ such that $(A \lambda I)v = 0$ has a solution.
 - 3. An eigenvalue of *A* is a scalar λ such that $Av = \lambda v$ for a nonzero vector *v*.
 - 4. An eigenvalue of *A* is a scalar λ such that det $(A \lambda I) = 0$.

Solution.

- a) Statement 2 is correct: an eigenvector must be nonzero, but its eigenvalue may be zero.
- **b)** Statement 2 is incorrect: the solution v must be nontrivial.

3. Find a basis
$$\mathcal{B}$$
 for the (-1)-eigenspace of $Z = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 2 & 4 \\ 0 & 0 & -1 \end{pmatrix}$

Solution.

For $\lambda = -1$, we find Nul($Z - \lambda I$).

$$\left(Z - \lambda I \mid 0 \right) = \left(Z + I \mid 0 \right) = \begin{pmatrix} 3 & 3 & 1 \mid 0 \\ 3 & 3 & 4 \mid 0 \\ 0 & 0 & 0 \mid 0 \end{pmatrix} \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 1 & 0 \mid 0 \\ 0 & 0 & 1 \mid 0 \\ 0 & 0 & 0 \mid 0 \end{pmatrix}.$$

Therefore, x = -y, y = y, and z = 0, so

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -y \\ y \\ 0 \end{pmatrix} = y \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}.$$

A basis is $\mathcal{B} = \left\{ \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \right\}$. We can check to ensure $\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$ is an eigenvector with corresponding eigenvalue -1:

$$Z\begin{pmatrix} -1\\1\\0 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 1\\3 & 2 & 4\\0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -1\\1\\0 \end{pmatrix} = \begin{pmatrix} -2+3\\-3+2\\0 \end{pmatrix} = \begin{pmatrix} 1\\-1\\0 \end{pmatrix} = -\begin{pmatrix} -1\\1\\0 \end{pmatrix}.$$

4. Suppose *A* is an $n \times n$ matrix satisfying $A^2 = 0$. Find all eigenvalues of *A*. Justify your answer.

Solution.

If λ is an eigenvalue of A and $\nu \neq 0$ is a corresponding eigenvector, then

 $Av = \lambda v \implies A(Av) = A\lambda v \implies A^2v = \lambda(Av) \implies 0 = \lambda(\lambda v) \implies 0 = \lambda^2 v.$ Since $v \neq 0$ this means $\lambda^2 = 0$, so $\lambda = 0$. This shows that 0 is the only possible eigenvalue of *A*.

On the other hand, det(A) = 0 since $(det(A))^2 = det(A^2) = det(0) = 0$, so 0 must be an eigenvalue of *A*. Therefore, the only eigenvalue of *A* is 0.

5. Match the statements (i)-(v) with the corresponding statements (a)-(e). All matrices are 3×3 . There is a unique correspondence. Justify the correspondences in words.

(i)
$$Ax = \begin{pmatrix} 5\\1\\2 \end{pmatrix}$$
 has a unique solution.

(ii) The transformation T(v) = Av fixes a nonzero vector.

(iii) *A* is obtained from *B* by subtracting the third row of *B* from the first row of *B*.(iv) The columns of *A* and *B* are the same; except that the first, second and third columns of A are respectively the first, third, and second columns of *B*.(v) The columns of *A*, when added, give the zero vector.

(a) 0 is an eigenvalue of *A*.
(b) *A* is invertible.
(c) det(*A*) = det(*B*)
(d) det(*A*) = - det(*B*)
(e) 1 is an eigenvalue of *A*.

Solution.

(i) matches with (b).(ii) matches with (e).(iii) matches with (c).(iv) matches with (d).(v) matches with (a).