## Supplemental problems: Chapter 4, Determinants

1. If $A$ is an $n \times n$ matrix, is it necessarily true that $\operatorname{det}(-A)=-\operatorname{det}(A)$ ? Justify your answer.

## Solution.

No. Since $\operatorname{det}(c A)=c^{n} \operatorname{det}(A)$, we see $\operatorname{det}(-A)=(-1)^{n} \operatorname{det}(A)$, so $\operatorname{det}(-A)=\operatorname{det}(A)$ if $n$ is even, and $\operatorname{det}(-A)=-\operatorname{det}(A)$ if $n$ is odd.
2. Let $A$ be an $n \times n$ matrix.
a) Using cofactor expansion, explain why $\operatorname{det}(A)=0$ if $A$ has a row or a column of zeros.
b) Using cofactor expansion, explain why $\operatorname{det}(A)=0$ if $A$ has adjacent identical columns.

## Solution.

a) If $A$ has zeros for all entries in row $i$ (so $a_{i 1}=a_{i 2}=\cdots=a_{i n}=0$ ), then the cofactor expansion along row $i$ is $\operatorname{det}(A)=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n}=0 \cdot C_{i 1}+0 \cdot C_{i 2}+\cdots+0 \cdot C_{i n}=0$.
Similarly, if $A$ has zeros for all entries in column $j$, then the cofactor expansion along column $j$ is the sum of a bunch of zeros and is thus 0 .
b) If $A$ has identical adjacent columns, then the cofactor expansions will be identical except that one expansion's terms for $\operatorname{det}(A)$ will have plus signs where the other expansion's terms for $\operatorname{det}(A)$ have minus signs (due to the $(-1)^{\text {power }}$ factors) and vice versa.

Therefore, $\operatorname{det}(A)=-\operatorname{det}(A)$, so $\operatorname{det} A=0$.
3. Find the volume of the parallelepiped in $\mathbf{R}^{4}$ naturally determined by the vectors

$$
\left(\begin{array}{l}
4 \\
1 \\
3 \\
8
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
7 \\
0 \\
3
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
2 \\
0 \\
1
\end{array}\right), \quad\left(\begin{array}{c}
5 \\
-5 \\
0 \\
7
\end{array}\right)
$$

## Solution.

We put the vectors as columns of a matrix $A$ and find $|\operatorname{det}(A)|$. For this, we expand $\operatorname{det}(A)$ along the third row because it only has one nonzero entry.
$\operatorname{det}(A)=3(-1)^{3+1} \cdot \operatorname{det}\left(\begin{array}{ccc}0 & 0 & 5 \\ 7 & 2 & -5 \\ 3 & 1 & 7\end{array}\right)=3 \cdot 5(-1)^{1+3} \operatorname{det}\left(\begin{array}{ll}7 & 2 \\ 3 & 1\end{array}\right)=3(5)(1)(7-6)=15$.
(In the second step, we used the cofactor expansion along the first row since it had only one nonzero entry.)

The volume is $|\operatorname{det}(A)|=|15|=15$.
4. Let $A=\left(\begin{array}{cc}-1 & 1 \\ 1 & 7\end{array}\right)$, and define a transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $T(x)=A x$. Find the area of $T(S)$, if $S$ is a triangle in $\mathbf{R}^{2}$ with area 2.

## Solution.

$|\operatorname{det}(A)| \operatorname{Vol}(S)=|-7-1| \cdot 2=16$.
5. Let

$$
A=\left(\begin{array}{rrrr}
2 & -8 & 6 & 8 \\
3 & -9 & 5 & 10 \\
-3 & 0 & 1 & -2 \\
1 & -4 & 0 & 6
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rrrr}
0 & 1 & 5 & 4 \\
1 & -1 & -3 & 0 \\
-1 & 0 & 5 & 4 \\
3 & -3 & -2 & 5
\end{array}\right)
$$

a) Compute $\operatorname{det}(A)$.
b) Compute $\operatorname{det}(B)$.
c) Compute $\operatorname{det}(A B)$.
d) Compute $\operatorname{det}\left(A^{2} B^{-1} A B^{2}\right)$.

## Solution.

a) Cofactor expansion would take some time, since the matrix has almost no zero entries. We use row reduction below, where $r$ counts the row swaps and $s$ measures the scaling factors.

$$
\begin{gathered}
\left(\begin{array}{rrrr}
2 & -8 & 6 & 8 \\
3 & -9 & 5 & 10 \\
-3 & 0 & 1 & -2 \\
1 & -4 & 0 & 6
\end{array}\right) \xrightarrow{R_{1}=\frac{R_{1}}{2}}\left(\begin{array}{rrrr}
1 & -4 & 3 & 4 \\
3 & -9 & 5 & 10 \\
-3 & 0 & 1 & -2 \\
1 & -4 & 0 & 6
\end{array}\right)\left(r=0, s=\frac{1}{2}\right) \\
\xrightarrow[R_{3}=R_{3}+3 R_{1}, R_{4}=R_{4}-R_{1}]{R_{2}=R_{2}-3 R_{1}}\left(\begin{array}{rrrr}
1 & -4 & 3 & 4 \\
0 & 3 & -4 & -2 \\
0 & -12 & 10 & 10 \\
0 & 0 & -3 & 2
\end{array}\right)\left(r=0, s=\frac{1}{2}\right) \\
\\
\xrightarrow{R_{3}=R_{3}+4 R_{2}}\left(\begin{array}{rrrr}
1 & -4 & 3 & 4 \\
0 & 3 & -4 & -2 \\
0 & 0 & -6 & 2 \\
0 & 0 & -3 & 2
\end{array}\right)\left(r=0, s=\frac{1}{2}\right) \\
\\
\operatorname{det}(A)=(-1)^{0} \xrightarrow{R_{4}=R_{4}-\frac{R_{2}}{2}}\left(\begin{array}{rrrr}
1 & -4 & 3 & 4 \\
0 & 3 & -4 & -2 \\
0 & 0 & -6 & 2 \\
0 & 0 & 0 & 1
\end{array}\right)\left(r=0, s=\frac{1}{2}\right) \\
1 / 2
\end{gathered}
$$

b) This is a complicated matrix without a lot of zeros, so we compute the determinant by row reduction. After one row swap and several row replacements, we reduce to the matrix $\left(\begin{array}{cccc}1 & -1 & -3 & 0 \\ 0 & 1 & 5 & 4 \\ 0 & 0 & 7 & 8 \\ 0 & 0 & 0 & -3\end{array}\right)$. The determinant of this matrix is -21 , so the determinant of the original matrix is 21 .
c) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=(-36)(21)=-756$.
d) $\operatorname{det}\left(A^{2} B^{-1} A B^{2}\right)=\operatorname{det}(A)^{2} \operatorname{det}(B)^{-1} \operatorname{det}(A) \operatorname{det}(B)^{2}=\operatorname{det}(A)^{3} \operatorname{det}(B)=(-36)^{3}(21)=$ $-979,776$.
6. If $A$ is a $3 \times 3$ matrix and $\operatorname{det}(A)=1$, what is $\operatorname{det}(-2 A)$ ?

## Solution.

By determinant properties, scaling one row by $c$ multiplies the determinant by $c$. When we take $c A$ for an $n \times n$ matrix $A$, we are multiplying each row by $c$. This multiplies the determinant by $c$ a total of $n$ times.

Thus, if $A$ is $n \times n$, then $\operatorname{det}(c A)=c^{n} \operatorname{det}(A)$. Here $n=3$, so

$$
\operatorname{det}(-2 A)=(-2)^{3} \operatorname{det}(A)=-8 \operatorname{det}(A)=-8
$$

7. a) Is there a real $2 \times 2$ matrix $A$ that satisfies $A^{4}=-I_{2}$ ? Either write such an $A$, or show that no such $A$ exists.
(hint: think geometrically! The matrix $-I_{2}$ represents rotation by $\pi$ radians).
b) Is there a real $3 \times 3$ matrix $A$ that satisfies $A^{4}=-I_{3}$ ? Either write such an $A$, or show that no such $A$ exists.

## Solution.

a) Yes. Just take $A$ to be the matrix of counterclockwise rotation by $\frac{\pi}{4}$ radians:

$$
A=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)
$$

Then $A^{2}$ gives rotation c.c. by $\frac{\pi}{2}$ radians, $A^{3}$ gives rotation c.c. by $\frac{3 \pi}{4}$ radians, and $A^{4}$ gives rotation c.c. by $\pi$ radians, which has matrix $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)=-I_{2}$.
b) No. If $A^{4}=-I$ then

$$
[\operatorname{det}(A)]^{4}=\operatorname{det}\left(A^{4}\right)=\operatorname{det}(-I)=(-1)^{3}=-1 .
$$

In other words, if $A^{4}=-I$ then $[\operatorname{det}(A)]^{4}=-1$, which is impossible since $\operatorname{det}(A)$ is a real number.

Similarly, $A^{4}=-I$ is impossible if $A$ is $5 \times 5,7 \times 7$, etc.

## Supplemental problems: §5.1

1. True or false. Answer true if the statement is always true. Otherwise, answer false.
a) If $A$ and $B$ are $n \times n$ matrices and $A$ is row equivalent to $B$, then $A$ and $B$ have the same eigenvalues.
b) If $A$ is an $n \times n$ matrix and its eigenvectors form a basis for $\mathbf{R}^{n}$, then $A$ is invertible.
c) If 0 is an eigenvalue of the $n \times n$ matrix $A$, then $\operatorname{rank}(A)<n$.
d) The diagonal entries of an $n \times n$ matrix $A$ are its eigenvalues.
e) If $A$ is invertible and 2 is an eigenvalue of $A$, then $\frac{1}{2}$ is an eigenvalue of $A^{-1}$.
f) If $\operatorname{det}(A)=0$, then 0 is an eigenvalue of $A$.

## Solution.

a) False. For instance, the matrices $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ are row equivalent, but have different eigenvalues.
b) False. For example, the zero matrix is not invertible but its eigenvectors form a basis for $\mathbf{R}^{n}$.
c) True. If $\lambda=0$ is an eigenvalue of $A$ then $A$ is not invertible so its associated transformation $T(x)=A x$ is not onto, hence $\operatorname{rank}(A)<n$.
d) False. This is true if $A$ is triangular, but not in general.

For example, if $A=\left(\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right)$ then the diagonal entries are 2 and 0 but the only eigenvalue is $\lambda=1$, since solving the characteristic equation gives us

$$
(2-\lambda)(-\lambda)-(1)(-1)=0 \quad \lambda^{2}-2 \lambda+1=0 \quad(\lambda-1)^{2}=0 \quad \lambda=1 .
$$

e) True. Let $v$ be an eigenvector corresponding to the eigenvalue 2 .

$$
A v=2 v \Longrightarrow A^{-1} A v=A^{-1}(2 v) \Longrightarrow v=2 A^{-1} v \Longrightarrow \frac{1}{2} v=A^{-1} v .
$$

Therefore, $v$ is an eigenvector of $A^{-1}$ corresponding to the eigenvalue $\frac{1}{2}$.
f) True. If $\operatorname{det}(A)=0$ then $A$ is not invertible, so $A v=0 v$ has a nontrivial solution.
2. In this problem, you need not explain your answers; just circle the correct one(s). Let $A$ be an $n \times n$ matrix.
a) Which one of the following statements is correct?

1. An eigenvector of $A$ is a vector $v$ such that $A v=\lambda v$ for a nonzero scalar $\lambda$.
2. An eigenvector of $A$ is a nonzero vector $v$ such that $A v=\lambda v$ for a scalar $\lambda$.
3. An eigenvector of $A$ is a nonzero scalar $\lambda$ such that $A v=\lambda v$ for some vector $v$.
4. An eigenvector of $A$ is a nonzero vector $v$ such that $A v=\lambda v$ for a nonzero scalar $\lambda$.
b) Which one of the following statements is not correct?
5. An eigenvalue of $A$ is a scalar $\lambda$ such that $A-\lambda I$ is not invertible.
6. An eigenvalue of $A$ is a scalar $\lambda$ such that $(A-\lambda I) v=0$ has a solution.
7. An eigenvalue of $A$ is a scalar $\lambda$ such that $A v=\lambda \nu$ for a nonzero vector $v$.
8. An eigenvalue of $A$ is a scalar $\lambda$ such that $\operatorname{det}(A-\lambda I)=0$.

## Solution.

a) Statement 2 is correct: an eigenvector must be nonzero, but its eigenvalue may be zero.
b) Statement 2 is incorrect: the solution $v$ must be nontrivial.
3. Find a basis $\mathcal{B}$ for the (-1)-eigenspace of $Z=\left(\begin{array}{ccc}2 & 3 & 1 \\ 3 & 2 & 4 \\ 0 & 0 & -1\end{array}\right)$

## Solution.

For $\lambda=-1$, we find $\operatorname{Nul}(Z-\lambda I)$.

$$
(Z-\lambda I \mid 0)=(Z+I \mid 0)=\left(\begin{array}{lll|l}
3 & 3 & 1 & 0 \\
3 & 3 & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{\operatorname{rref}}\left(\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Therefore, $x=-y, y=y$, and $z=0$, so

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-y \\
y \\
0
\end{array}\right)=y\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right) .
$$

A basis is $\mathcal{B}=\left\{\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)\right\}$. We can check to ensure $\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$ is an eigenvector with corresponding eigenvalue -1 :

$$
Z\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{ccc}
2 & 3 & 1 \\
3 & 2 & 4 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
-2+3 \\
-3+2 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)=-\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)
$$

4. Suppose $A$ is an $n \times n$ matrix satisfying $A^{2}=0$. Find all eigenvalues of $A$. Justify your answer.

## Solution.

If $\lambda$ is an eigenvalue of $A$ and $v \neq 0$ is a corresponding eigenvector, then

$$
A v=\lambda v \Longrightarrow A(A v)=A \lambda v \Longrightarrow A^{2} v=\lambda(A v) \Longrightarrow 0=\lambda(\lambda v) \Longrightarrow 0=\lambda^{2} v .
$$

Since $v \neq 0$ this means $\lambda^{2}=0$, so $\lambda=0$. This shows that 0 is the only possible eigenvalue of $A$.

On the other hand, $\operatorname{det}(A)=0$ since $(\operatorname{det}(A))^{2}=\operatorname{det}\left(A^{2}\right)=\operatorname{det}(0)=0$, so 0 must be an eigenvalue of $A$. Therefore, the only eigenvalue of $A$ is 0 .
5. Match the statements (i)-(v) with the corresponding statements (a)-(e). All matrices are $3 \times 3$. There is a unique correspondence. Justify the correspondences in words.
(i) $A x=\left(\begin{array}{l}5 \\ 1 \\ 2\end{array}\right)$ has a unique solution.
(ii) The transformation $T(v)=A v$ fixes a nonzero vector.
(iii) $A$ is obtained from $B$ by subtracting the third row of $B$ from the first row of $B$.
(iv) The columns of $A$ and $B$ are the same; except that the first, second and third columns of A are respectively the first, third, and second columns of $B$.
(v) The columns of $A$, when added, give the zero vector.
(a) 0 is an eigenvalue of $A$.
(b) $A$ is invertible.
(c) $\operatorname{det}(A)=\operatorname{det}(B)$
(d) $\operatorname{det}(A)=-\operatorname{det}(B)$
(e) 1 is an eigenvalue of $A$.

## Solution.

(i) matches with (b).
(ii) matches with (e).
(iii) matches with (c).
(iv) matches with (d).
(v) matches with (a).

