Supplemental problems: Chapter 4, Determinants

1. If A is an $n \times n$ matrix, is it necessarily true that $\det(-A) = -\det(A)$? Justify your answer.

2. Let A be an $n \times n$ matrix.
 a) Using cofactor expansion, explain why $\det(A) = 0$ if A has a row or a column of zeros.
 b) Using cofactor expansion, explain why $\det(A) = 0$ if A has adjacent identical columns.

3. Find the volume of the parallelepiped in \mathbb{R}^4 naturally determined by the vectors
 \[
 \begin{pmatrix}
 4 \\
 1 \\
 3 \\
 8 \\
 \end{pmatrix}, \quad
 \begin{pmatrix}
 0 \\
 7 \\
 0 \\
 3 \\
 \end{pmatrix}, \quad
 \begin{pmatrix}
 0 \\
 2 \\
 1 \\
 1 \\
 \end{pmatrix}, \quad
 \begin{pmatrix}
 5 \\
 -5 \\
 0 \\
 7 \\
 \end{pmatrix}.
 \]

4. Let $A = \begin{pmatrix}
 -1 & 1 \\
 1 & 7 \\
 \end{pmatrix}$, and define a transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ by $T(x) = Ax$. Find the area of $T(S)$, if S is a triangle in \mathbb{R}^2 with area 2.

5. Let
 \[
 A = \begin{pmatrix}
 2 & -8 & 6 & 8 \\
 3 & -9 & 5 & 10 \\
 -3 & 0 & 1 & -2 \\
 1 & -4 & 0 & 6 \\
 \end{pmatrix} \quad \text{and} \quad
 B = \begin{pmatrix}
 0 & 1 & 5 & 4 \\
 1 & -1 & -3 & 0 \\
 -1 & 0 & 5 & 4 \\
 3 & -3 & -2 & 5 \\
 \end{pmatrix}
 \]
 a) Compute $\det(A)$.
 b) Compute $\det(B)$.
 c) Compute $\det(AB)$.
 d) Compute $\det(A^2B^{-1}AB^2)$.

6. If A is a 3×3 matrix and $\det(A) = 1$, what is $\det(-2A)$?

7. a) Is there a real 2×2 matrix A that satisfies $A^4 = -I_2$? Either write such an A, or show that no such A exists.
 (hint: think geometrically! The matrix $-I_2$ represents rotation by π radians).
 b) Is there a real 3×3 matrix A that satisfies $A^4 = -I_3$? Either write such an A, or show that no such A exists.
Supplemental problems: §5.1

1. True or false. Answer true if the statement is always true. Otherwise, answer false.
 a) If A and B are $n \times n$ matrices and A is row equivalent to B, then A and B have
 the same eigenvalues.
 b) If A is an $n \times n$ matrix and its eigenvectors form a basis for \mathbb{R}^n, then A is invertible.
 c) If 0 is an eigenvalue of the $n \times n$ matrix A, then rank$(A) < n$.
 d) The diagonal entries of an $n \times n$ matrix A are its eigenvalues.
 e) If A is invertible and 2 is an eigenvalue of A, then $\frac{1}{2}$ is an eigenvalue of A^{-1}.
 f) If $\det(A) = 0$, then 0 is an eigenvalue of A.

2. In this problem, you need not explain your answers; just circle the correct one(s).
 Let A be an $n \times n$ matrix.
 a) Which one of the following statements is correct?
 1. An eigenvector of A is a vector v such that $Av = \lambda v$ for a nonzero scalar λ.
 2. An eigenvector of A is a nonzero vector v such that $Av = \lambda v$ for a scalar λ.
 3. An eigenvector of A is a nonzero scalar λ such that $Av = \lambda v$ for some vector v.
 4. An eigenvector of A is a nonzero vector v such that $Av = \lambda v$ for a nonzero scalar λ.
 b) Which one of the following statements is not correct?
 1. An eigenvalue of A is a scalar λ such that $A - \lambda I$ is not invertible.
 2. An eigenvalue of A is a scalar λ such that $(A - \lambda I)v = 0$ has a solution.
 3. An eigenvalue of A is a scalar λ such that $Av = \lambda v$ for a nonzero vector v.
 4. An eigenvalue of A is a scalar λ such that $\det(A - \lambda I) = 0$.

3. Find a basis B for the (-1)-eigenspace of $Z = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 2 & 4 \\ 0 & 0 & -1 \end{pmatrix}$

4. Suppose A is an $n \times n$ matrix satisfying $A^2 = 0$. Find all eigenvalues of A. Justify your answer.
5. Match the statements (i)-(v) with the corresponding statements (a)-(e). All matrices are 3×3. There is a unique correspondence. Justify the correspondences in words.

(i) $Ax = \begin{pmatrix} 5 \\ 1 \\ 2 \end{pmatrix}$ has a unique solution.

(ii) The transformation $T(v) = Av$ fixes a nonzero vector.

(iii) A is obtained from B by subtracting the third row of B from the first row of B.

(iv) The columns of A and B are the same; except that the first, second and third columns of A are respectively the first, third, and second columns of B.

(v) The columns of A, when added, give the zero vector.

(a) 0 is an eigenvalue of A.
(b) A is invertible.
(c) $\det(A) = \det(B)$
(d) $\det(A) = -\det(B)$
(e) 1 is an eigenvalue of A.