Supplemental problems: §5.5

- **1.** a) If *A* is the matrix that implements rotation by 143° in \mathbb{R}^2 , then *A* has no real eigenvalues.
 - **b)** A 3×3 matrix can have eigenvalues 3, 5, and 2 + i.
 - c) If $v = \binom{2+i}{1}$ is an eigenvector of *A* corresponding to the eigenvalue $\lambda = 1-i$, then $w = \binom{2i-1}{i}$ is an eigenvector of *A* corresponding to the eigenvalue $\lambda = 1-i$.

Solution.

- a) True. If A had a real eigenvalue λ , then we would have $Ax = \lambda x$ for some nonzero vector x in \mathbb{R}^2 . This means that x would lie on the same line through the origin as the rotation of x by 143°, which is impossible.
- **b)** False. If 2 + i is an eigenvalue then so is its conjugate 2 i.
- **c)** True. Any nonzero complex multiple of v is also an eigenvector for eigenvalue 1-i, and w=iv.
- **2.** Consider the matrix

$$A = \begin{pmatrix} 3\sqrt{3} - 1 & -5\sqrt{3} \\ 2\sqrt{3} & -3\sqrt{3} - 1 \end{pmatrix}$$

- a) Find both complex eigenvalues of A
- b) Find an eigenvector corresponding to each eigenvalue.

Solution.

a) We compute the characteristic polynomial:

$$f(\lambda) = \det \begin{pmatrix} 3\sqrt{3} - 1 - \lambda & -5\sqrt{3} \\ 2\sqrt{3} & -3\sqrt{3} - 1 - \lambda \end{pmatrix}$$
$$= (-1 - \lambda + 3\sqrt{3})(-1 - \lambda - 3\sqrt{3}) + (2)(5)(3)$$
$$= (-1 - \lambda)^2 - 9(3) + 10(3)$$
$$= \lambda^2 + 2\lambda + 4.$$

By the quadratic formula,

$$\lambda = \frac{-2 \pm \sqrt{2^2 - 4(4)}}{2} = \frac{-2 \pm 2\sqrt{3}i}{2} = -1 \pm \sqrt{3}i.$$

b) Let $\lambda = -1 - \sqrt{3}i$. Then

$$A - \lambda I = \begin{pmatrix} (i+3)\sqrt{3} & -5\sqrt{3} \\ 2\sqrt{3} & (i-3)\sqrt{3} \end{pmatrix}.$$

2 Solutions

Since $det(A-\lambda I) = 0$, the second row is a multiple of the first, so a row echelon form of *A* is

$$\begin{pmatrix} i+3 & -5 \\ 0 & 0 \end{pmatrix}$$
.

Hence an eigenvector with eigenvalue $-1-\sqrt{3}i$ is $v=\begin{pmatrix}5\\3+i\end{pmatrix}$. It follows that an eigenvector with eigenvalue $-1+\sqrt{3}i$ is $\overline{v}=\begin{pmatrix}5\\3-i\end{pmatrix}$.

3. This one is just for fun! It demonstrates, by example, that a matrix can have a mix of real and non-real complex eigenvalues, and that we can find a basis for each eigenspace in the usual fashion, even if it takes more work than usual.

Let
$$A = \begin{pmatrix} 4 & -3 & 3 \\ 3 & 4 & -2 \\ 0 & 0 & 2 \end{pmatrix}$$
. Find all eigenvalues of A . For each eigenvalue of A , find

a corresponding eigenvector.

Solution.

First we compute the characteristic polynomial by expanding cofactors along the third row:

$$f(\lambda) = \det \begin{pmatrix} 4 - \lambda & -3 & 3 \\ 3 & 4 - \lambda & -2 \\ 0 & 0 & 2 - \lambda \end{pmatrix} = (2 - \lambda) \det \begin{pmatrix} 4 - \lambda & -3 \\ 3 & 4 - \lambda \end{pmatrix}$$
$$= (2 - \lambda) ((4 - \lambda)^2 + 9) = (2 - \lambda)(\lambda^2 - 8\lambda + 25).$$

Using the quadratic equation on the second factor, we find the eigenvalues

$$\lambda_1 = 2$$
 $\lambda_2 = 4 - 3i$ $\overline{\lambda}_2 = 4 + 3i$.

Next compute an eigenvector with eigenvalue $\lambda_1 = 2$:

$$A - 2I = \begin{pmatrix} 2 & -3 & 3 \\ 3 & 2 & -2 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{RREF} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}.$$

The parametric form is x = 0, y = z, so the parametric vector form of the solution is

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = z \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
 eigenvector $v_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$.

Now we compute an eigenvector with eigenvalue $\lambda_2 = 4 - 3i$:

$$A = (4-3i)I = \begin{pmatrix} 3i & -3 & 3 \\ 3 & 3i & -2 \\ 0 & 0 & 3i-2 \end{pmatrix} \xrightarrow{R_1 \longleftrightarrow R_2} \begin{pmatrix} 3 & 3i & -2 \\ 3i & -3 & 3 \\ 0 & 0 & 3i-2 \end{pmatrix}$$

$$\xrightarrow{R_2 = R_2 - iR_1} \begin{pmatrix} 3 & 3i & -2 \\ 0 & 0 & 3+2i \\ 0 & 0 & 3i-2 \end{pmatrix} \xrightarrow{R_2 = R_2 \div (3+2i)} \begin{pmatrix} 3 & 3i & -2 \\ 0 & 0 & 1 \\ 0 & 0 & 3i-2 \end{pmatrix}$$

$$\xrightarrow{\text{row replacements}} \begin{pmatrix} 3 & 3i & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_1 = R_1 \div 3} \begin{pmatrix} 1 & i & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

The parametric form of the solution is x = -iy, z = 0, so the parametric vector form is

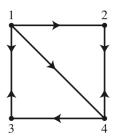
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = y \begin{pmatrix} -i \\ 1 \\ 0 \end{pmatrix} \xrightarrow{\text{eigenvector}} v_2 = \begin{pmatrix} -i \\ 1 \\ 0 \end{pmatrix}.$$

An eigenvector for the complex conjugate eigenvalue $\overline{\lambda}_2 = 4 + 3i$ is the complex conjugate eigenvector $\overline{v}_2 = \begin{pmatrix} i \\ 1 \\ 0 \end{pmatrix}$.

4 Solutions

Supplemental problems: §5.6

1. Suppose the internet has four pages in the following manner. Arrows represent links from one page towards another. For example, page 1 links to page 4 but not vice versa.



- a) Write the importance matrix for this internet.
- b) Assume there is no damping factor, so the importance matrix is the Google matrix. The 1-eigenspace is spanned by $\begin{pmatrix} 3/4 \\ 3/4 \\ 3/4 \\ 1 \end{pmatrix}$. Find the steady-state vector for the Google matrix. What page has the highest rank?

Solution.

(a) The importance matrix is

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1 & 0 & 0 \end{pmatrix}$$

(b) The steady-state vector is

$$\frac{1}{\frac{3}{4} + \frac{3}{4} + \frac{3}{4} + 1} \begin{pmatrix} 3/4\\3/4\\3/4\\1 \end{pmatrix} = \begin{pmatrix} 3/13\\3/13\\3/13\\4/13 \end{pmatrix}.$$

From the steady-state vector, we see page 4 has the highest rank.

- **2.** The companies X, Y, and Z fight for customers. This year, company X has 40 customers, Company Y has 15 customers, and Z has 20 customers. Each year, the following changes occur:
 - X keeps 75% of its customers, while losing 15% to Y and 10% to Z.
 - Y keeps 60% of its customers, while losing 5% to X and 35% to Z.
 - Z keeps 65% of its customers, while losing 15% to X and 20% to Y.

Write a stochastic matrix A and a vector x so that Ax will give the number of customers for firms X, Y, and Z (respectively) after one year. You do not need to compute Ax.

Solution.

$$A = \begin{pmatrix} 0.75 & 0.05 & 0.15 \\ 0.15 & 0.6 & 0.20 \\ 0.1 & 0.35 & 0.65 \end{pmatrix} \qquad x = \begin{pmatrix} 40 \\ 15 \\ 20 \end{pmatrix}.$$