Supplemental problems: Chapter 6

- **1.** True or false. If the statement is always true, answer true. Otherwise, answer false. Justify your answer.
 - a) Suppose $W = \operatorname{Span}\{w\}$ for some vector $w \neq 0$, and suppose v is a vector orthogonal to w. Then the orthogonal projection of v onto W is the zero vector.
 - **b)** Suppose W is a subspace of \mathbf{R}^n and x is a vector in \mathbf{R}^n . If x is not in W, then $x x_W$ is not zero.
 - c) Suppose W is a subspace of \mathbb{R}^n and x is in both W and W^{\perp} . Then x = 0.
 - **d)** Suppose \hat{x} is a least squares solution to Ax = b. Then \hat{x} is the closest vector to b in the column space of A.
- **2.** Let $W = \operatorname{Span}\{\nu_1, \nu_2\}$, where $\nu_1 = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$ and $\nu_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.
 - **a)** Find the closest point w in W to $x = \begin{pmatrix} 0 \\ 14 \\ -4 \end{pmatrix}$.
 - **b)** Find the distance from w to $\begin{pmatrix} 0 \\ 14 \\ -4 \end{pmatrix}$.
 - **c)** Find the standard matrix for the orthogonal projection onto Span $\{v_1\}$.
 - **d)** Find the standard matrix for the orthogonal projection onto W.
- **3.** Find the least-squares line y = Mx + B that approximates the data points (-2, -11), (0, -2), (4, 2).