Supplemental problems: Chapter 6

1. True or false. If the statement is always true, answer true. Otherwise, answer false. Justify your answer.
a) Suppose $W=\operatorname{Span}\{w\}$ for some vector $w \neq 0$, and suppose v is a vector orthogonal to w. Then the orthogonal projection of v onto W is the zero vector.
b) Suppose W is a subspace of \mathbf{R}^{n} and x is a vector in \mathbf{R}^{n}. If x is not in W, then $x-x_{W}$ is not zero.
c) Suppose W is a subspace of \mathbf{R}^{n} and x is in both W and W^{\perp}. Then $x=0$.
d) Suppose \hat{x} is a least squares solution to $A x=b$. Then \hat{x} is the closest vector to b in the column space of A.
2. Let $W=\operatorname{Span}\left\{v_{1}, v_{2}\right\}$, where $v_{1}=\left(\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right)$ and $v_{2}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$.
a) Find the closest point w in W to $x=\left(\begin{array}{c}0 \\ 14 \\ -4\end{array}\right)$.
b) Find the distance from w to $\left(\begin{array}{c}0 \\ 14 \\ -4\end{array}\right)$.
c) Find the standard matrix for the orthogonal projection onto $\operatorname{Span}\left\{v_{1}\right\}$.
d) Find the standard matrix for the orthogonal projection onto W.
3. Find the least-squares line $y=M x+B$ that approximates the data points

$$
(-2,-11), \quad(0,-2), \quad(4,2) .
$$

