MATH 1553, SPRING 2020 SAMPLE MIDTERM 2B: COVERS SECTIONS 2.6 THROUGH 3.6

Please **read all instructions** carefully before beginning.

- Write your name on the front of each page (not just the cover page!).
- The maximum score on this exam is 50 points, and you have 50 minutes to complete this exam.
- There are no calculators or aids of any kind (notes, text, etc.) allowed.
- As always, RREF means "reduced row echelon form."
- Show your work, unless instructed otherwise. A correct answer without appropriate work will receive little or no credit! If you cannot fit your work on the front side of the page, use the back side of the page and indicate that you are using the back side.
- We will hand out loose scrap paper, but it **will not be graded** under any circumstances. All work must be written on the exam itself.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!

This is a practice exam. It is meant to be similar in format, length, and difficulty to the real exam. It is **not** meant as a comprehensive list of study problems. I recommend completing the practice exam in 50 minutes, without notes or distractions.

The exam is not designed to test material from the previous midterm on its own. However, knowledge of the material prior to section §2.6 is necessary for everything we do for the rest of the semester, so it is fair game for the exam as it applies to §§2.6 through 3.6.

Problem 1.

In what follows, A is a matrix, and T(x) = Ax is its matrix transformation.

Circle **T** if the statement is always true, and circle **F** otherwise. You do not need to explain your answer.

- a) \mathbf{T} \mathbf{F} The zero vector is in the range of T.
- b) **T F** If *A* is a non-invertible square matrix, then two of the columns of *A* are scalar multiples of each other.
- c) **T F** If *A* is a 2×5 matrix, then Nul*A* is a subspace of \mathbb{R}^2 .
- d) \mathbf{T} \mathbf{F} If *A* has more columns than rows, then *T* is not onto.
- e) **T F** If *T* is one-to-one and onto, then *A* is invertible

Problem 2.

Which of the following are subspaces $(of R^4)$ and why?

$$\mathbf{a)} \text{ Span} \left\{ \begin{pmatrix} 1\\0\\3\\2 \end{pmatrix}, \begin{pmatrix} -2\\7\\9\\13 \end{pmatrix}, \begin{pmatrix} 144\\0\\0\\1 \end{pmatrix} \right\}$$

b) Nul
$$\begin{pmatrix} 2 & -1 & 3 \\ 0 & 0 & 4 \\ 6 & -4 & 2 \\ -9 & 3 & 4 \end{pmatrix}$$

c)
$$\operatorname{Col} \begin{pmatrix} 2 & -1 & 3 \\ 0 & 0 & 4 \\ 6 & -4 & 2 \\ -9 & 3 & 4 \end{pmatrix}$$

d)
$$V = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \text{ in } \mathbf{R}^4 \mid xy = zw \right\}$$

e) The range of a linear transformation with codomain \mathbb{R}^4 .

Problem 3.

Consider the matrix *A* and its reduced row echelon form:

$$\begin{pmatrix} 2 & 4 & 7 & -16 \\ 3 & 6 & -1 & -1 \end{pmatrix} \xrightarrow{\text{overage}} \begin{pmatrix} 1 & 2 & 0 & -1 \\ 0 & 0 & 1 & -2 \end{pmatrix}.$$

- **a)** Find a basis $\{v_1, v_2\}$ for ColA.
- **b)** What are rank(A) and dim(NulA)?
- **c)** Find a basis $\{w_1, w_2\}$ for Col A, such that w_1 is a not scalar multiple of v_1 or v_2 , and likewise for w_2 . Justify your answer.

Problem 4.

a) Consider the vectors

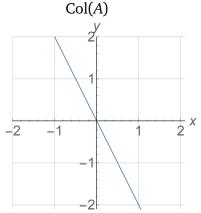
$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 0 \end{pmatrix} \quad v_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 0 \end{pmatrix} \quad v_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix}$$

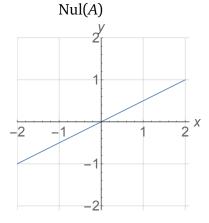
and the subspace V of \mathbb{R}^4 given by

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \text{ in } \mathbf{R}^4 \mid w = 0 \right\}.$$

- (i) Let e_1, e_2, e_3, e_4 be the standard unit coordinate vectors of \mathbf{R}^4 . Justify why $\{e_1, e_2, e_3\}$ is a basis for V.
- (ii) Justify why $\{v_1, v_2, v_3\}$ is a basis for V.

b) Write a matrix *A* whose column space and null space are drawn below.





Problem 5.

Consider the matrices

$$A = \begin{pmatrix} 1 & -2 \\ 0 & 2 \\ 0 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 3 & 2 \\ 0 & -1 & 4 \\ 0 & 0 & 1 \end{pmatrix}.$$

Let T and U be the associated linear transformations, respectively

$$T(x) = Ax$$
 $U(x) = Bx$.

a) Fill in the boxes:

$$T: \mathbf{R} \longrightarrow \mathbf{R} \longrightarrow \mathbf{R} \longrightarrow \mathbf{R} \longrightarrow \mathbf{R} \longrightarrow \mathbf{R}$$
.

- **b)** Is *T* one-to-one?
- c) Find the standard matrix for U^{-1} .
- **d)** Find the standard matrix for $U \circ T$.

[Scratch work]