## Math 1553 Midterm exam 3 solutions

1. 
2. For all $n \times n$ matrices $A$ and $B$ we have $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$.

## Solution.

False. det is a very complex nonlinear operator. Linearity does not hold in general. For example Let $A=I, B=-I$ then $\operatorname{det}(I-I)=0 \neq 1+(-1)^{n}$ whenever $n$ is even.
3. A matrix and its reduced row echelon form must have the same eigenvalues.

## Solution.

False. $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$ has $\operatorname{RREF}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
4. $A$ is $n \times n$ matrix, then the dimensions of the eigenspaces for $A$ must add up to $n$

## Solution.

False. $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ has only 1-dimensional eigenspace.
5. Say that $\lambda$ is a real number and that $A$ is a square matrix. Then $\lambda$ is an eigenvalue for $A$ if and only if $A-\lambda I$ is invertible.

## Solution.

False. "if and only if $A-\lambda I$ is singular (not invertible)" would be correct.
6. A matrix $A$ is diagonalizable and $A$ invertible, then $A^{-1}$ is diagonalizable.

## Solution.

True. $A=P D P^{-1}$ Then $A^{-1}=\left(P D P^{-1}\right)^{-1}=P D^{-1} P^{-1}$
7. Complete the following definition. Say that $A$ is an $n \times n$ matrix, $v$ is a vector in $\mathbb{R}^{n}$ and $\lambda$ is a real number. Then $v$ is an eigenvector for $A$ with eigenvalue $\lambda$ if..

## Solution.

if $A v=\lambda v$ and $v \neq 0$
8. Say that $A$ is $3 \times 3$ matrix and that there are non-zero vectors $x, y$ and $z$ with $A x=x, A y=-2 y, A z=0$.

Which of the following statements must be true? Select only one answer.

## Solution.

$A$ is diagonalizable but is not invertible. The eigenvalues of $A$ are $1,-2,0$ so it is not invertible. All eigenvalues are distinct therefore, there are 3 linearly independent eigenvectors to diagonalize $A$.
9. Suppose that $A$ and $B$ are $2 \times 2$ matrices satisfying $\operatorname{det} A=2$ and $A^{2} B=\left(\begin{array}{cc}1 & 3 \\ 2 & 18\end{array}\right)$. What is the determinant of $B$ ?

## Solution.

False. $\operatorname{det}\left(A^{2} B\right)=18-6=12$ and also $=(\operatorname{det} A)^{2} \operatorname{det} B=4 \operatorname{det} B$. So $\operatorname{det} B=3$
10. Find the determinant of the following matrix.

$$
\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}\right)
$$

## Solution.

0 . Since the matrix has rows are the same.
11. Suppose that the determinant of $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is 1 . What is the determinant of $\left(\begin{array}{cc}2 c & 2 d \\ 2 a & 2 b\end{array}\right)$

## Solution.

Use three row operations on $A: R_{1} \leftrightarrow R_{2}, 2 \times R_{1}, 2 \times R_{2}$. Therefore, there are 3 changes: $\times(-1), \times 2, \times 2$. So the determinant is -4 .
12. Suppose that $S$ is an oval in $\mathbf{R}^{2}$ with area 7. What is the area of $T(S)$, if $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is the linear transformation with standard matrix $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ ?

## Solution.

Area of $T(S)$ is $|\operatorname{det} A| \times \operatorname{area}(S)=|4-6| \times 7=14$.
13. Find the nonzero value of $a$ that makes the matrix $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & a & 0 \\ 2 & a & a\end{array}\right)$ not invertible. (Note: the question is asking for a nonzero value of $a$, so 0 is not a correct answer)

## Solution.

Do row reductions and try to take it to REF.

$$
\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & a & 0 \\
2 & a & a
\end{array}\right) \xrightarrow{R_{3}-2 R_{1}}\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & a & 0 \\
0 & a & a-2
\end{array}\right) \xrightarrow{R_{3}-R_{2}}\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & a & 0 \\
0 & 0 & a-2
\end{array}\right)
$$

If we select $a=0$ or 2 , then the matrix is not invertible. Since it ask for nonzero solutions, so it must be $a=2$.
14. $A$ is $n \times n$ matrix with $n$ distinct real eigenvalues, and we choose one eigenvector for each eigenvalue, then the chosen eigenvectors must be linearly independent.

## Solution.

True. This is a theorem.
15. Find the value of $a$ so that the following matrix has one real eigenvalue of algebraic multiplicity 2. $A=\left(\begin{array}{cc}1 & a \\ -1 & -3\end{array}\right)$

## Solution.

First compute characteristic polynomial

$$
\operatorname{det}(A-\lambda I)=(1-\lambda)(-3-\lambda)+a=\lambda^{2}+2 \lambda-3+a=(\lambda+1)^{2}-4+a
$$

. Since we want algebraic multiplicity 2 , we must have only one unique root for the polynomial, therefore $a=4$.
16. $A$ is $4 \times 4$ matrix with eigenvalues 7,8 , and 9 . Suppose we also know that the 7 -eigenspace is 2 -dimensional. Can we conclude that $A$ is diagonalizable?

## Solution.

Yes, it is diagonalizable. It means (geometric multiplicity) G.M(7)=2. Then we know G.M.(8) $\geq 1$, G.M.(9) $\geq 1$. Therefore we have at least 4 independent eigenvectors.
17. Suppose $A$ is $2 \times 2$ matrix whose entries are real numbers, and suppose that $\lambda=$ $3+2 i$ as an eigenvalue of $A$ with corresponding eigenvector $\binom{-2}{-2 i}$. Which one of the following statements must be true?

## Solution.

$3-2 i$ is an eigenvalue of A, with corresponding eigenvector $\binom{-2}{2 i}$. Just take complex conjugate.
18. Select the $2 \times 2$ matrix $A$ whose 33 -eigenspace is spanned by $\binom{1}{4}$ and whose $(-1)$ eigenspace is spanned by $\binom{1}{-2}$.

## Solution.

$$
A=\left(\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right)\left(\begin{array}{cc}
3 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right)^{-1}
$$

19. Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be the linear transformation given by $T(x, y, z)=(x, y, 0)$ and let $A$ be the standard matrix for $T$. Which one of the following statements must be true?

## Solution.

"The eigenvalue $\lambda=1$ has algebraic multiplicity 2 and the 1 -eigenspace has dimension 2". The transformation is projection onto $x y$-plane. $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$.
20. Let $A=\left(\begin{array}{cc}2 & 2 \\ 3 & -4\end{array}\right)\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)\left(\begin{array}{cc}2 & 2 \\ 3 & -4\end{array}\right)^{-1}$. Find the number $c$ so that $A\binom{2}{c}=3\binom{2}{c}$.

## Solution.

$\binom{2}{c}$ is an eigenvector corresponding to $\lambda=3$, so $c=-4$.
21. Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the transformation of rotation counterclockwise by 30 degrees, and let $A$ be the standard matrix for $T$. Which one of the following statements must be true about $A$ ?

## Solution.

"A has two distinct complex eigenvalues". $A=\frac{1}{2}\left(\begin{array}{cc}1 & -\sqrt{3} \\ \sqrt{3} & 1\end{array}\right)$ has complex eigenvalues.
22. Suppose $A$ is a positive stochastic $2 \times 2$ matrix and $A\binom{\frac{3}{7}}{\frac{4}{7}}=\binom{\frac{3}{7}}{\frac{4}{7}}$. As $n$ gets large, $A^{n}\binom{10}{4}$ approaches the vector $v=\binom{a}{8}$. Find $a$.

## Solution.

We know $v$ must be a multiple of steady-state vector $\binom{\frac{3}{7}}{\frac{4}{7}}$, so $a=6$.
23. Consider an internet with 3 pages. Page 1 links to pages 2 and 3. Page 2 links only to page 1 . Page 3 links only to page 2.

What is the importance matrix $A$ (also known as the Google matrix) for this internet?

## Solution.

$$
A=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 / 2 & 0 & 1 \\
1 / 2 & 0 & 0
\end{array}\right)
$$

