\qquad

Math 1553 Quiz 1, Spring 2020 (10 points, 10 minutes)
 Lecture A (8:00 AM)

Solutions

Show your work on problem 4 or you may receive little or no credit. You do not need to show work or justify your answers on problems 1 through 3.

1. (1 point) Which of the following describes the set of all (x, y, z) in \mathbf{R}^{3} that satisfy the equation $3 x-y+z=1$? Clearly circle one answer below.
(i) A single point in \mathbf{R}^{3}.
(ii) A line in \mathbf{R}^{3}.
(iii) A plane in \mathbf{R}^{3}.
2. (1 point) Determine whether the following equation in the variables x, y, and z is linear or not linear. Clearly circle your answer.

$$
\begin{array}{lll}
5 x-\sin (4) y-3^{1 / 4} z=1 & \text { LINEAR } \quad \text { NOT LINEAR }
\end{array}
$$

Note that $-\sin (4)$ and $-3^{1 / 4}$ are just real numbers that are coefficients for the y and z terms.
3. (4 points) Write a consistent system of three linear equations in the two variables x and y.

Solution.

Many possibilities. For example, you can take a consistent system of two equations in x and y and add them together to get the third equation and make the system consistent.

$$
\begin{gathered}
x+y=4 \\
x-y=2 \\
2 x=6 .
\end{gathered}
$$

You could even use the equation " $0=0$ " as an equation if you want.
Turn over to the back side for problem 4!
4. (4 points) Find all real values of h (if there are any) so that the following system of linear equations is inconsistent:

$$
\begin{gathered}
-2 x+3 y=6 \\
8 x-h y=2
\end{gathered}
$$

Solution.

The answer is $h=12$.
The student can use augmented matrices if they desire, or write things out the long way. We eliminate the $8 x$ term in the second equation by adding four times the first equation to the second.

$$
\left(\begin{array}{rr|r}
-2 & 3 & 6 \\
8 & -h & 2
\end{array}\right) \xrightarrow{R_{2}=R_{2}+4 R_{1}}\left(\begin{array}{rr|r}
-2 & 3 & 6 \\
0 & 12-h & 26
\end{array}\right)
$$

The second line says $(12-h) y=26$. If $h=12$ then we will get $0=26$, making the system inconsistent. If $h \neq 12$ then we will be able to solve for y in terms of h and then back-substitute to get x, however these extra steps are not necessary in this problem.

Given how closely the material from 1.1 blends into 1.2 , it is also fine if a student uses a pivots argument when getting $h=12$.

An alternate method is to note that the system will be inconsistent precisely when the two lines given by the equations fail to intersect, which is when they are parallel non-identical lines. Multiplying the first equation by -4 shows our lines are

$$
\begin{gathered}
8 x-12 y=-24 \\
8 x-h y=2
\end{gathered}
$$

From this we see the lines are parallel non-identical lines precisely when $h=12$.

