Math 1553 Quiz 4, Spring 2020 (10 points, 10 minutes) Jankowski, Lecture A1-A3 (8:00 AM)

Solutions

On this quiz, you do not need to show your work or justify your answers, since every question is either TRUE/FALSE or short answer.

1. True or false. If the statement is always true, circle TRUE. Otherwise, circle FALSE.
a) If W is a 2-dimensional subspace of \mathbf{R}^{4} containing $v_{1}=\left(\begin{array}{c}1 \\ -1 \\ 0 \\ 1\end{array}\right)$ and $v_{2}=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right)$, then $\left\{v_{1}, v_{2}\right\}$ must be a basis for $W . \quad$ TRUE FALSE
b) There is a 3×5 matrix A satisfying nullity $(A)=1 . \quad$ TRUE \quad FALSE
2. (4 points) Consider the matrix A and its RREF, which are given below:

$$
A=\left(\begin{array}{ccc}
1 & -3 & 2 \\
2 & -6 & 0 \\
4 & -12 & 3 \\
1 & -3 & 1
\end{array}\right) \xrightarrow{\text { RREF }}\left(\begin{array}{ccc}
1 & -3 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Define a matrix transformation T by $T(x)=A x$.
a) What is the domain of T ? \mathbf{R}^{3}
b) What is the codomain of T ? \mathbf{R}^{4}
c) Write a basis for the range of T.

The pivot columns of A form a basis for range(T): $\left\{\left(\begin{array}{l}1 \\ 2 \\ 4 \\ 1\end{array}\right),\left(\begin{array}{l}2 \\ 0 \\ 3 \\ 1\end{array}\right)\right\}$. In fact, if
$A=\left(\begin{array}{ccc}\mid & \mid & \mid \\ v_{1} & v_{2} & v_{3} \\ \mid & \mid & \mid\end{array}\right)$, then $\left\{v_{2}, v_{3}\right\}$ would also be a basis for range(T), but $\left\{v_{1}, v_{2}\right\}$ would not.
3. (4 points) Match each matrix with its corresponding matrix transformation from \mathbf{R}^{2} to \mathbf{R}^{2}, which is given by some roman numeral from (i) through (viii).

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right) \text { corresponds to } \quad \text { (ii) Reflection across the line } y=-x \\
& B=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \text { corresponds to } \quad \text { (v) Rotation by } 90^{\circ} \text { counterclockwise. } \\
& C=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \text { corresponds to } \quad \text { (viii) Reflection across the } y \text {-axis. } \\
& D=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { corresponds to } \quad \text { (iv) The identity transf. } T(x, y)=(x, y) .
\end{aligned}
$$

(i) Reflection across the line $y=x$.
(ii) Reflection across the line $y=-x$.
(iii) Projection onto the x-axis given by $T(x, y)=(x, 0)$
(iv) The identity transformation given by $T(x, y)=(x, y)$.
(v) Rotation by 90° counterclockwise.
(vi) Rotation by 90° clockwise.
(vii) Reflection across the x-axis.
(viii) Reflection across the y-axis.

