Name: \qquad Studio Section:

Math 1553 Quiz 4, Spring 2020 (10 points, 10 minutes) Jankowski, Lecture C1-C4 (11:15 AM)

Solutions

On this quiz, you do not need to show your work or justify your answers, since every question is either TRUE/FALSE or short answer.

1. True or false. If the statement is always true, circle TRUE. Otherwise, circle FALSE.
a) If W is a 2-dimensional subspace of \mathbf{R}^{5}, then every basis of W must consist of exactly 2 vectors. TRUE FALSE
b) If A is a 10×15 matrix and the set of solutions to $A x=0$ has dimension 8 , then $\operatorname{Col}(A)$ is a 7-dimensional subspace of \mathbf{R}^{10}. TRUE FALSE
2. (4 points) Consider the matrix A and its RREF, which are given below:

$$
A=\left(\begin{array}{cccc}
1 & -2 & -1 & 2 \\
0 & 0 & -2 & 4 \\
2 & -4 & -4 & 8
\end{array}\right) \xrightarrow{\text { RREF }}\left(\begin{array}{cccc}
1 & -2 & 0 & 0 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Define a matrix transformation T by $T(x)=A x$.
a) What is the domain of T ? \mathbf{R}^{4}
b) What is the codomain of T ? \mathbf{R}^{3}
c) Write a basis for the range of T.

The pivot columns of A form a basis for range (T) : $\left\{\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right),\left(\begin{array}{l}-1 \\ -2 \\ -4\end{array}\right)\right\}$. In fact, if $A=\left(\begin{array}{cccc}\mid & \mid & \mid & \mid \\ v_{1} & v_{2} & v_{3} & v_{4} \\ \mid & \mid & \mid & \mid\end{array}\right)$, then any choice of two columns of A will be a basis for range (T) except for $\left\{v_{1}, v_{2}\right\}$ or $\left\{v_{3}, v_{4}\right\}$.
turn over for problem 3!
3. (4 points) Match each matrix with its corresponding matrix transformation from \mathbf{R}^{2} to \mathbf{R}^{2}, which is given by some roman numeral from (i) through (viii).

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \text { corresponds to (v) Rotation by } 90^{\circ} \text { counterclockwise. } \\
& B=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text { corresponds to } \\
& C=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \text { (i) Reflection across the line } y=x . \\
& D=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { corresponds to } \\
& \text { (vii) Reflection across the } x \text {-axis. }
\end{aligned}
$$

(i) Reflection across the line $y=x$.
(ii) Reflection across the line $y=-x$.
(iii) Projection onto the x-axis given by $T(x, y)=(x, 0)$
(iv) The identity transformation given by $T(x, y)=(x, y)$.
(v) Rotation by 90° counterclockwise.
(vi) Rotation by 90° clockwise.
(vii) Reflection across the x-axis.
(viii) Reflection across the y-axis.

