Name: \qquad Studio Section:

Math 1553 Quiz 5, Spring 2020 (10 points, 10 minutes) Jankowski, Lecture A1-A3 (8:00 AM)

Solutions

You do not need to show your work except in problem 2(a) and problem 3.

1. (2 points) Suppose A is an $m \times n$ matrix with $m>n$, and let T be its associated matrix transformation $T(x)=A x$.
a) Which of the following is correct?
(ii) There is not enough information to tell if T is one-to-one.
b) Which of the following is correct?
(i) T cannot be onto.
2. (5 points) Consider the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ given by

$$
T(x, y, z)=(x-y-2 z, 2 x-2 y-4 z)
$$

a) Find the standard matrix A for T.

$$
A=\left(\begin{array}{lll}
T\left(e_{1}\right) & T\left(e_{2}\right) & T\left(e_{3}\right)
\end{array}\right)=\left(\begin{array}{lll}
1 & -1 & -2 \\
2 & -2 & -4
\end{array}\right) .
$$

b) Is T onto? YES NO A only has one pivot, or alternatively, the second entry in $T(v)$ is always 2 times the first, so for example $(3,1)$ is not in the range of T.
c) Is T one-to-one? YES NO T is a linear transformation from \mathbf{R}^{3} to \mathbf{R}^{2}. Just from the fact that $3>2$ we see T cannot be one-to-one, no work required.
3. (3 points) Suppose $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is a linear transformation satisfying

$$
T\binom{1}{0}=\binom{4}{2} \quad \text { and } \quad T\binom{0}{1}=\binom{-1}{1}
$$

Find $T\binom{2}{4}$.
By linearity,

$$
T\binom{2}{4}=T\binom{2}{0}+T\binom{0}{4}=2 T\binom{1}{0}+4 T\binom{0}{1}=\binom{8}{4}+\binom{-4}{4}=\binom{4}{8} .
$$

