Name: \qquad Studio Section:

Math 1553 Quiz 5, Spring 2020 (10 points, 10 minutes) Jankowski, Lecture C1-C4 (11:15 AM)

Solutions

You do not need to show your work except in problem 2(a) and problem 3.

1. (2 points) Suppose A is an $m \times n$ matrix with $m<n$, and let T be its associated matrix transformation $T(x)=A x$.
a) Which of the following is correct?
(i) T cannot be one-to-one.
b) Which of the following is correct?
(ii) There is not enough information to tell if T is onto.
2. (5 points) Consider the linear transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ given by

$$
T(x, y)=(2 x-y, y-x, x)
$$

a) Find the standard matrix A for T.

$$
A=\left(\begin{array}{cc}
T\left(e_{1}\right) & T\left(e_{2}\right)
\end{array}\right)=\left(\begin{array}{cc}
2 & -1 \\
-1 & 1 \\
1 & 0
\end{array}\right) .
$$

b) Is T onto? YES NO T is a linear transformation from \mathbf{R}^{2} to \mathbf{R}^{3}. Just from the fact that $2<3$ we see T cannot be onto, no work required.
c) Is T one-to-one? YES NO Note A has two pivots, or alternatively, note that if $T(x, y)=(0,0,0)$ then from its third and second entries we get $x=0$ and also $y-x=0$ thus $y=0$. Thus if $T(v)=0$ then $v=(0,0)$.
3. (3 points) Suppose $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is a linear transformation satisfying

$$
T\binom{1}{0}=\binom{2}{-1} \quad \text { and } \quad T\binom{0}{1}=\binom{1}{3}
$$

Find $T\binom{2}{-1}$.
By linearity,

$$
T\binom{2}{-1}=T\binom{2}{0}+T\binom{0}{-1}=2 T\binom{1}{0}-1 T\binom{0}{1}=\binom{4}{-2}-\binom{1}{3}=\binom{3}{-5} .
$$

