Math 1553 Quiz 6, Spring 2020 Solutions

- **1.** This was the honor code statement.
- **2.** We are told det(A) = -1 and asked to find det(A^{-1}).

$$\det(A^{-1}) = \frac{1}{\det(A)} = \frac{1}{-1} = -1$$

3. We need the area of the triangle in \mathbb{R}^2 with vertices (1, 2), (4, 3), and (2, 5). The vector from the first vertex to the second is $v_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, and the vector from the first vertex to the third is $v_2 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$. The triangle has half the area of the parallelogram naturally determined by v_1 and v_2 , so

Area of triangle
$$= \frac{1}{2} \left| \det \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \right| = \frac{1}{2} (8) = 4$$

- 4. To find det $\begin{pmatrix} 1 & 2 & 0 \\ 2 & 3 & 0 \\ 5 & 4 & 1 \end{pmatrix}$, we can use the cofactor expansion along the third column. det $\begin{pmatrix} 1 & 2 & 0 \\ 2 & 3 & 0 \\ 5 & 4 & 1 \end{pmatrix} = (-1)^{3+3}(1) \det \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} = (1)(1)(-1) = -1.$
- **5.** If *A* is a 3×3 matrix with the first row the same as the second row, then the RREF of *A* will have a row of zeros. Therefore, *A* must not be invertible, which means that 0 must be an eigenvalue of *A*.
- 6. We need to find the value of *m* so that $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is an eigenvector of $A = \begin{pmatrix} 1 & m \\ 2 & 3 \end{pmatrix}$. Note $A \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & m \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1+m \\ 5 \end{pmatrix}$. From the second entry we see that if $A \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ then $\lambda = 5$, in which case

 $A\begin{pmatrix}1\\1\end{pmatrix} = \begin{pmatrix}5\\5\end{pmatrix} = \begin{pmatrix}1+m\\5\end{pmatrix}, \text{ so } m = 4. \text{ We can check to verify that indeed}\\\begin{pmatrix}1&4\\2&3\end{pmatrix}\begin{pmatrix}1\\1\end{pmatrix} = \begin{pmatrix}5\\5\end{pmatrix}.$