Math 1553 Quiz 6, Spring 2020

Solutions

1. This was the honor code statement.
2. We are told $\operatorname{det}(A)=-1$ and asked to find $\operatorname{det}\left(A^{-1}\right)$.

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}=\frac{1}{-1}=-1
$$

3. We need the area of the triangle in \mathbf{R}^{2} with vertices $(1,2),(4,3)$, and $(2,5)$. The vector from the first vertex to the second is $v_{1}=\binom{3}{1}$, and the vector from the first vertex to the third is $v_{2}=\binom{1}{3}$. The triangle has half the area of the parallelogram naturally determined by v_{1} and v_{2}, so

$$
\text { Area of triangle }=\frac{1}{2}\left|\operatorname{det}\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)\right|=\frac{1}{2}(8)=4
$$

4. To find det $\left(\begin{array}{lll}1 & 2 & 0 \\ 2 & 3 & 0 \\ 5 & 4 & 1\end{array}\right)$, we can use the cofactor expansion along the third column.

$$
\operatorname{det}\left(\begin{array}{lll}
1 & 2 & 0 \\
2 & 3 & 0 \\
5 & 4 & 1
\end{array}\right)=(-1)^{3+3}(1) \operatorname{det}\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right)=(1)(1)(-1)=-1
$$

5. If A is a 3×3 matrix with the first row the same as the second row, then the RREF of A will have a row of zeros. Therefore, A must not be invertible, which means that 0 must be an eigenvalue of A.
6. We need to find the value of m so that $\binom{1}{1}$ is an eigenvector of $A=\left(\begin{array}{cc}1 & m \\ 2 & 3\end{array}\right)$. Note

$$
A\binom{1}{1}=\left(\begin{array}{cc}
1 & m \\
2 & 3
\end{array}\right)\binom{1}{1}=\binom{1+m}{5}
$$

From the second entry we see that if $A\binom{1}{1}=\lambda\binom{1}{1}$ then $\lambda=5$, in which case $A\binom{1}{1}=\binom{5}{5}=\binom{1+m}{5}$, so $m=4$. We can check to verify that indeed

$$
\left(\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right)\binom{1}{1}=\binom{5}{5}
$$

