1. This was the honor code statement.

2. We are told \(\det(A) = -1 \) and asked to find \(\det(A^{-1}) \).
 \[\det(A^{-1}) = \frac{1}{\det(A)} = \frac{1}{-1} = -1. \]

3. We need the area of the triangle in \(\mathbb{R}^2 \) with vertices \((1, 2), (4, 3), \) and \((2, 5)\). The vector from the first vertex to the second is \(v_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \), and the vector from the first vertex to the third is \(v_2 = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \). The triangle has half the area of the parallelogram naturally determined by \(v_1 \) and \(v_2 \), so
 \[\text{Area of triangle} = \frac{1}{2} \left| \det \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \right| = \frac{1}{2} (8) = 4. \]

4. To find \(\det \begin{pmatrix} 1 & 2 & 0 \\ 2 & 3 & 0 \\ 5 & 4 & 1 \end{pmatrix} \), we can use the cofactor expansion along the third column.
 \[\det \begin{pmatrix} 1 & 2 & 0 \\ 2 & 3 & 0 \\ 5 & 4 & 1 \end{pmatrix} = (-1)^{3+3}(1) \det \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} = (1)(1)(-1) = -1. \]

5. If \(A \) is a \(3 \times 3 \) matrix with the first row the same as the second row, then the RREF of \(A \) will have a row of zeros. Therefore, \(A \) must not be invertible, which means that 0 must be an eigenvalue of \(A \).

6. We need to find the value of \(m \) so that \(\begin{pmatrix} 1 \\ 1 \end{pmatrix} \) is an eigenvector of \(A = \begin{pmatrix} 1 & m \\ 2 & 3 \end{pmatrix} \). Note
 \[A \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & m \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 + m \\ 5 \end{pmatrix}. \]
 From the second entry we see that if \(A \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 1 \end{pmatrix} \) then \(\lambda = 5 \), in which case
 \[A \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 5 \end{pmatrix} = \begin{pmatrix} 1 + m \\ 5 \end{pmatrix}, \]
 so \(m = 4 \). We can check to verify that indeed
 \[\begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 5 \end{pmatrix}. \]