1.

2. Suppose *A* is a 4×4 matrix with characteristic polynomial $(3 - \lambda)^2 (\lambda + 1)(\lambda - 4)$. Find the determinant of A.

Solution.

Determinant can be computed from product of eigenvalues

$$\det(A) = 3^2 \times (-1) \times 4 = -36$$

3. $A = \begin{pmatrix} 2 & 3 \\ 0 & m \end{pmatrix}$. Find all the values of *m* so that *A* is not diagonalizable.

Solution.

m = 2 is the only solution. First of all, matrix $\begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix}$ is not diagonalizable since geometric multiplicity of $\lambda = 2$ is 1. There is not enough eigenvectors.

Suppose $m \neq 2$, then A upper-triangular matrix have two distinct eigenvalues 2, m so it must have 2 linearly independent eigenvectors. Then A must be diagonalizable.

4. *A* is a 4×4 matrix with characteristic polynomial $(1 - \lambda)^2 (3 + \lambda)\lambda$. Is *A* invertible, diagonalizable? Can you give examples?

Solution.

A has eigenvalues $\lambda = 0, -3, 1, 1$. So det(A) = 0 tells us A is not invertible.

- A could be diagonalizable if $\lambda = 1$ have a 2-dimensional eigenspace, for example
- $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$ A could be not diagonalizable if $\lambda = 1$ have a 1-dimensional

eigenspace, for example
$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

5. Suppose
$$A = \begin{pmatrix} 4 & -3 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 0 & -3 \end{pmatrix} \begin{pmatrix} 4 & -3 \\ 1 & 1 \end{pmatrix}^{-1}$$
. Find the value of *c* so that $A \begin{pmatrix} c \\ 1 \end{pmatrix} = 5 \begin{pmatrix} c \\ 1 \end{pmatrix}$

Solution.

 $A\binom{c}{1} = 5\binom{c}{1}$ gives us a eigen-equation $Av = \lambda v$ with $\lambda = 5$ eigenvector $v = \binom{c}{1}$ So we know that eigenvalue $\lambda = 5$ have a eigenvector $\binom{4}{1}$ from the diagonalization, so c = 4.

6. Find all real values of *a* , *b* , and *c* so that the matrix *A* is diagonalizable.

$$A = \begin{pmatrix} -1 & a & b \\ 0 & 3 & c \\ 0 & 0 & 4 \end{pmatrix}$$

Solution.

Since A have 3 distinct eigenvalues, it is always diagonalizable. So a, b, c can take any real number.