Math 1553 quiz 7 solutions

1.
2. Suppose A is a 4×4 matrix with characteristic polynomial $(3-\lambda)^{2}(\lambda+1)(\lambda-4)$. Find the determinant of A.

Solution.

Determinant can be computed from product of eigenvalues

$$
\operatorname{det}(A)=3^{2} \times(-1) \times 4=-36
$$

3. $A=\left(\begin{array}{cc}2 & 3 \\ 0 & m\end{array}\right)$. Find all the values of m so that A is not diagonalizable.

Solution.

$m=2$ is the only solution. First of all, matrix $\left(\begin{array}{ll}2 & 3 \\ 0 & 2\end{array}\right)$ is not diagonalizable since geometric multiplicity of $\lambda=2$ is 1 . There is not enough eigenvectors.

Suppose $m \neq 2$, then A upper-triangular matrix have two distinct eigenvalues $2, m$ so it must have 2 linearly independent eigenvectors. Then A must be diagonalizable.
4. A is a 4×4 matrix with characteristic polynomial $(1-\lambda)^{2}(3+\lambda) \lambda$. Is A invertible, diagonalizable? Can you give examples?

Solution.

A has eigenvalues $\lambda=0,-3,1,1$. So $\operatorname{det}(A)=0$ tells us A is not invertible.
A could be diagonalizable if $\lambda=1$ have a 2-dimensional eigenspace, for example $A=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) . A$ could be not diagonalizable if $\lambda=1$ have a 1-dimensional eigenspace, for example $A=\left(\begin{array}{cccc}1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$.
5. Suppose $A=\left(\begin{array}{cc}4 & -3 \\ 1 & 1\end{array}\right)\left(\begin{array}{cc}5 & 0 \\ 0 & -3\end{array}\right)\left(\begin{array}{cc}4 & -3 \\ 1 & 1\end{array}\right)^{-1}$. Find the value of c so that $A\binom{c}{1}=$ $5\binom{c}{1}$

Solution.

$A\binom{c}{1}=5\binom{c}{1}$ gives us a eigen-equation $A v=\lambda v$ with $\lambda=5$ eigenvector $v=\binom{c}{1}$
So we know that eigenvalue $\lambda=5$ have a eigenvector $\binom{4}{1}$ from the diagonalization, so $c=4$.
6. Find all real values of a, b, and c so that the matrix A is diagonalizable.

$$
A=\left(\begin{array}{ccc}
-1 & a & b \\
0 & 3 & c \\
0 & 0 & 4
\end{array}\right)
$$

Solution.

Since A have 3 distinct eigenvalues, it is always diagonalizable. So a, b, c can take any real number.

