Sections 6.2 and 6.3

Orthogonal Projections

Orthogonal Complements

Definition

Let W be a subspace of \mathbb{R}^n . Its **orthogonal complement**, written W^{\perp} (read "W perp"), is the set of all vectors in \mathbb{R}^n which are orthogonal (perpendicular) to W. We will focus on when n = 2 and n = 3.

Pictures:

The orthogonal complement of a line in \mathbf{R}^2 is the perpendicular line. [interactive]

The orthogonal complement of a line in \mathbf{R}^3 is the perpendicular plane. [interactive]

The orthogonal complement of a plane in \mathbf{R}^3 is the perpendicular line. [interactive]

Orthogonal Complements

Computation

Problem: if
$$W = \text{Span} \left\{ \begin{pmatrix} 1\\1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$$
, compute W^{\perp} .
Let $v_1 = \begin{pmatrix} 1\\1\\-1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$.
A vector $u = \begin{pmatrix} x\\y\\z \end{pmatrix}$ is in W^{\perp} if and only if $u \perp v_1$ and $u \perp v_2$.

Why? If $u \perp v_1$ and $u \perp v_2$, then for any scalars c_1 and c_2 :

$$u \cdot (c_1v_1 + c_2v_2) = c_1(u \cdot v_1) + c_2(u \cdot v_2) = c_1(0) + c_2(0) = 0,$$

Therefore, *u* will be orthogonal to every vector in $\text{Span}\{v_1, v_2\}$.

Computation, continued

Now $u \perp v_1$ means x + y - z = 0 and $u \perp v_2$ means x + y + z = 0. This means $u = \begin{pmatrix} x \\ y \end{pmatrix}$ satisfies x + y - z = 0x + v + z = 0. which means u is in Nul $\begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix}$. Therefore, $W^{\perp} = \operatorname{Nul} \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix} = (\dots \text{ with work } \dots) = \operatorname{Span} \left\{ \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \right\}.$ [interactive]

$$\mathsf{Span}\{v_1, v_2, \dots, v_m\}^{\perp} = \mathsf{Nul}\begin{pmatrix} -v_1^T - \\ -v_2^T - \\ \vdots \\ -v_m^T - \end{pmatrix}$$

Best Approximation

Suppose you measure a data point x which you know for theoretical reasons must lie on a subspace W.

Due to measurement error, though, the measured x is not actually in W. Best approximation: y is the *closest* point to x on W.

How do you know that y is the closest point? The vector from y to x is orthogonal to W: it is in the *orthogonal complement* W^{\perp} .

Orthogonal Decomposition

Theorem

Every vector x in \mathbf{R}^n can be written as

$$x = x_W + x_{W^{\perp}}$$

for unique vectors x_W in W and $x_{W^{\perp}}$ in W^{\perp} .

The equation $x = x_W + x_{W^{\perp}}$ is called the **orthogonal decomposition** of x (with respect to W).

The vector x_W is the **orthogonal projection** of x onto W.

The vector x_W is the closest vector to x on W.

[interactive 1] [interactive 2]

Orthogonal Decomposition Example

Let W be the xy-plane in \mathbb{R}^3 . Then W^{\perp} is the z-axis.

$$x = \begin{pmatrix} 2\\1\\3 \end{pmatrix} \implies x_W = \begin{pmatrix} 2\\1\\0 \end{pmatrix} \qquad x_{W^{\perp}} = \begin{pmatrix} 0\\0\\3 \end{pmatrix}.$$
$$x = \begin{pmatrix} a\\b\\c \end{pmatrix} \implies x_W = \begin{pmatrix} a\\b\\0 \end{pmatrix} \qquad x_{W^{\perp}} = \begin{pmatrix} 0\\0\\c \end{pmatrix}.$$

This is just decomposing a vector into a "horizontal" component (in the xy-plane) and a "vertical" component (on the *z*-axis).

Orthogonal Decomposition Computation?

Problem: Given x and W, how do you compute the decomposition $x = x_W + x_{W^{\perp}}$? Observation: It is enough to compute x_W , because $x_{W^{\perp}} = x - x_W$.

The $A^T A$ Trick to compute x_W and $x_{W^{\perp}}$

Theorem (The $A^T A$ Trick)

Let W be a subspace of \mathbf{R}^n , let v_1, v_2, \ldots, v_m be a spanning set for W (e.g., a basis), and let

$$A = \begin{pmatrix} | & | & | \\ v_1 & v_2 & \cdots & v_m \\ | & | & | \end{pmatrix}$$

Then for any x in \mathbf{R}^n , the matrix equation

$$A^T A v = A^T x$$
 (in the unknown vector v)

is consistent, and $x_W = Av$ for any solution v.

Recipe for Computing $x = x_W + x_{W^{\perp}}$

- Write W as a column space of a matrix A.
- Find a solution v of $A^T A v = A^T x$ (by row reducing).

• Then
$$x_W = Av$$
 and $x_{W^{\perp}} = x - x_W$.

The $A^T A$ Trick An Example

Problem: Let

$$x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \qquad W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \text{ in } \mathbf{R}^3 \mid x_1 - x_2 + x_3 = 0 \right\}.$$

Find x_W , $x_{W^{\perp}}$, and the distance from x to W.

The distance from x to W is $||x_{W^{\perp}}||$, so we need to compute the orthogonal projection. First we need a basis for $W = \text{Nul} \begin{pmatrix} 1 & -1 & 1 \end{pmatrix}$. This matrix is in RREF, so the parametric form of the solution set is

$$\begin{array}{cccc} x_1 = x_2 - x_3 & \text{PVF} \\ x_2 = x_2 & & & \\ x_3 = & x_3 & & \\ \end{array} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.$$

Hence we can take a basis to be

$$\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix} \right\} \quad \stackrel{\text{verify}}{\longrightarrow} \quad A = \begin{pmatrix} 1 & -1\\1 & 0\\0 & 1 \end{pmatrix}$$

Problem: Let

$$x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \qquad W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \text{ in } \mathbf{R}^3 \mid x_1 - x_2 + x_3 = 0 \right\}.$$

Compute the distance from x to W.

We compute

$$A^{\mathsf{T}}A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \qquad A^{\mathsf{T}}x = \begin{pmatrix} 3 \\ 2 \end{pmatrix}.$$

To solve $A^T A v = A^T x$ we form an augmented matrix and row reduce:

$$\begin{pmatrix} 2 & -1 & | & 3 \\ -1 & 2 & | & 2 \end{pmatrix} \xrightarrow{\text{RREF}} \begin{pmatrix} 1 & 0 & 8/3 \\ 0 & 1 & 7/3 \end{pmatrix} \xrightarrow{\text{verv}} v = \frac{1}{3} \begin{pmatrix} 8 \\ 7 \end{pmatrix} .$$

$$x_W = Av = \frac{1}{3} \begin{pmatrix} 1 \\ 8 \\ 7 \end{pmatrix} \xrightarrow{\text{verv}} x_{W^{\perp}} = x - x_W = \frac{1}{3} \begin{pmatrix} 2 \\ -2 \\ 2 \end{pmatrix} .$$

The distance is $||x_{W^{\perp}}|| = \frac{1}{3}\sqrt{4+4+4} \approx 1.155.$

[interactive]

The $A^T A$ Trick

Theorem (The $A^T A$ Trick)

Let W be a subspace of \mathbf{R}^n , let v_1, v_2, \ldots, v_m be a spanning set for W (e.g., a basis), and let

$$A = \begin{pmatrix} | & | & | \\ v_1 & v_2 & \cdots & v_m \\ | & | & | \end{pmatrix}.$$

Then for any x in \mathbf{R}^n , the matrix equation

 $A^T A v = A^T x$ (in the unknown vector v)

is consistent, and $x_W = Av$ for any solution v.

Proof: Let $x = x_W + x_{W^{\perp}}$. Then $x_{W^{\perp}}$ is in $W^{\perp} = \text{Nul}(A^T)$, so $A^T x_{W^{\perp}} = 0$. Hence

$$A^{T}x = A^{T}(x_{W} + x_{W^{\perp}}) = A^{T}x_{W} + A^{T}x_{W^{\perp}} = A^{T}x_{W}$$

Since x_W is in $W = \text{Span}\{v_1, v_2, \dots, v_m\}$, we can write

$$x_W = c_1 v_1 + c_2 v_2 + \cdots + c_m v_m$$

If $v = (c_1, c_2, \dots, c_m)$ then $Av = x_W$, so $A^T x = A^T x_W = A^T Av.$

Orthogonal Projection onto a Line

Problem: Let $L = \text{Span}\{u\}$ be a line in \mathbb{R}^n and let x be a vector in \mathbb{R}^n . Compute x_L .

We have to solve $u^T uv = u^T x$, where u is an $n \times 1$ matrix. But $u^T u = u \cdot u$ and $u^T x = u \cdot x$ are scalars, so

$$v = \frac{u \cdot x}{u \cdot u} \implies x_L = uv = \frac{u \cdot x}{u \cdot u}u.$$

Projection onto a Line The projection of x onto a line $L = \text{Span}\{u\}$ is $x_L = \frac{u \cdot x}{u \cdot u} u \qquad x_{L\perp} = x - x_L.$

Orthogonal Projection onto a Line Example

Problem: Compute the orthogonal projection of $x = \begin{pmatrix} -6 \\ 4 \end{pmatrix}$ onto the line *L* spanned by $u = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, and find the distance from *u* to *L*.

$$x_{L} = \frac{x \cdot u}{u \cdot u} u = \frac{-18 + 8}{9 + 4} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = -\frac{10}{13} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \quad x_{L^{\perp}} = x - x_{L} = \frac{1}{13} \begin{pmatrix} -48 \\ 72 \end{pmatrix}.$$

The distance from x to L is

$$\|x_{L^{\perp}}\| = \frac{1}{13}\sqrt{48^2 + 72^2} \approx 6.656.$$

[interactive]

Projection Matrix Method 1

Let W be a subspace of \mathbf{R}^n and let $\mathcal{T} : \mathbf{R}^n \to \mathbf{R}^n$ be the orthogonal projection with respect to W.

How do you compute the standard matrix A for T?

The same as any other linear transformation:

$$A = (T(e_1) \quad T(e_2) \quad \cdots \quad T(e_n)).$$

Projection Matrix Method 1, Example 1

Problem: Let $L = \text{Span}\left\{\binom{3}{2}\right\}$ and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the orthogonal projection onto *L*. Compute the matrix *A* for *T*.

It's easy to compute orthogonal projection onto a line:

$$T(e_1) = (e_1)_L = \frac{u \cdot e_1}{u \cdot u} u = \frac{3}{13} \begin{pmatrix} 3\\2 \end{pmatrix}$$
$$\implies A = \frac{1}{13} \begin{pmatrix} 9 & 6\\6 & 4 \end{pmatrix}$$
$$T(e_2) = (e_2)_L = \frac{u \cdot e_2}{u \cdot u} u = \frac{2}{13} \begin{pmatrix} 3\\2 \end{pmatrix}$$

Projection Matrix Method 1, Example 2

Problem: Let

$$W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \text{ in } \mathbf{R}^3 \mid x_1 - x_2 + x_3 = 0 \right\}$$

and let $T : \mathbf{R}^3 \to \mathbf{R}^3$ be orthogonal projection onto W. Compute the matrix B for T.

We computed $W = \operatorname{Col} A$ for

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

To compute $T(e_i)$ we have to solve the matrix equation $A^T A v = A^T e_i$. We have

$$A^{\mathsf{T}}A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \qquad A^{\mathsf{T}}e_i = \mathsf{the} \ i\mathsf{th} \ \mathsf{column} \ \mathsf{of} \ A^{\mathsf{T}} = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}.$$

Problem: Let

$$W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \text{ in } \mathbf{R}^3 \mid x_1 - x_2 + x_3 = 0 \right\}$$

and let $T : \mathbf{R}^3 \to \mathbf{R}^3$ be orthogonal projection onto W. Compute the matrix B for T.

$$\begin{pmatrix} 2 & -1 & | & 1 \\ -1 & 2 & | & -1 \end{pmatrix} \xrightarrow{\text{RREF}} \begin{pmatrix} 1 & 0 & | & 1/3 \\ 0 & 1 & | & -1/3 \end{pmatrix} \implies T(e_1) = \frac{1}{3}A\begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{3}\begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & -1 & | & 1 \\ -1 & 2 & | & 0 \end{pmatrix} \xrightarrow{\text{RREF}} \begin{pmatrix} 1 & 0 & | & 2/3 \\ 0 & 1 & | & 1/3 \end{pmatrix} \implies T(e_2) = \frac{1}{3}A\begin{pmatrix} 2 \\ 1 \end{pmatrix} = \frac{1}{3}\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & -1 & | & 0 \\ -1 & 2 & | & 1 \end{pmatrix} \xrightarrow{\text{RREF}} \begin{pmatrix} 1 & 0 & | & 1/3 \\ 0 & 1 & | & 2/3 \end{pmatrix} \implies T(e_2) = \frac{1}{3}A\begin{pmatrix} 1 \\ 2 \end{pmatrix} = \frac{1}{3}\begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$$

$$\implies B = \frac{1}{3}\begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix}.$$

Projection Matrix Method 2

Theorem

Let $\{v_1, v_2, \ldots, v_m\}$ be a *linearly independent* set in \mathbb{R}^n , and let

$$A = \begin{pmatrix} | & | & | \\ v_1 & v_2 & \cdots & v_m \\ | & | & | \end{pmatrix}.$$

Then the $m \times m$ matrix $A^T A$ is invertible.

Proof: We'll show Nul $(A^T A) = \{0\}$. Suppose $A^T A v = 0$. Then Av is in Nul $(A^T) = \text{Col}(A)^{\perp}$. But Av is in Col(A) as well, so Av = 0, and hence v = 0 because the columns of A are linearly independent.

Projection Matrix Method 2

Theorem

Let $\{v_1, v_2, \ldots, v_m\}$ be a *linearly independent* set in \mathbb{R}^n , and let

$$A = \begin{pmatrix} | & | & | \\ v_1 & v_2 & \cdots & v_m \\ | & | & | \end{pmatrix}.$$

Then the $m \times m$ matrix $A^T A$ is invertible.

Let W be a subspace of \mathbf{R}^n and let $T: \mathbf{R}^n \to \mathbf{R}^n$ be the orthogonal projection with respect to W. Let $\{v_1, v_2, \ldots, v_m\}$ be a *basis* for W and let A be the matrix with columns v_1, v_2, \ldots, v_m . To compute $T(x) = x_W$ you solve $A^T A v = A x$; then $x_W = A v$.

$$v = (A^T A)^{-1} (A^T x) \implies T(x) = Av = [A(A^T A)^{-1} A^T]x.$$

If the columns of A are a *basis* for W then the matrix for T is $A(A^{T}A)^{-1}A^{T}.$

Projection Matrix Method 2, Example 1

Problem: Let $L = \text{Span}\left\{\binom{3}{2}\right\}$ and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the orthogonal projection onto L. Compute the matrix A for T.

The set $\left\{ \begin{pmatrix} 3\\2 \end{pmatrix} \right\}$ is a basis for L, so

$$A = u(u^{T}u)^{-1}u^{T} = \frac{1}{u \cdot u}uu^{T} = \frac{1}{13}\begin{pmatrix}3\\2\end{pmatrix}(3 \ 2) = \frac{1}{13}\begin{pmatrix}9 \ 6\\6 \ 4\end{pmatrix}.$$

Matrix of Projection onto a Line If $L = \text{Span}\{u\}$ is a line in \mathbb{R}^n , then the matrix for projection onto L is $\frac{1}{u \cdot u} u u^T.$ Projection Matrix Method 2, Example 2

Problem: Let

$$W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \text{ in } \mathbf{R}^3 \mid x_1 - x_2 + x_3 = 0 \right\}$$

and let $T : \mathbf{R}^3 \to \mathbf{R}^3$ be orthogonal projection onto W. Compute the matrix B for T.

In the slides for the last lecture we computed $W = \operatorname{Col} A$ for

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

The columns are linearly independent, so they form a basis for W. Hence

$$B = A(A^{T}A)^{-1}A^{T} = A\begin{pmatrix} 2 & -1\\ -1 & 2 \end{pmatrix}^{-1}A^{T} = \frac{1}{3}A\begin{pmatrix} 2 & 1\\ 1 & 2 \end{pmatrix}A^{T}$$
$$= \frac{1}{3}\begin{pmatrix} 2 & 1 & -1\\ 1 & 2 & 1\\ -1 & 1 & 2 \end{pmatrix}.$$

Poll

Let W be a subspace of \mathbf{R}^n which is neither the zero subspace nor all of \mathbf{R}^n .

PollLet A be the matrix for
$$\text{proj}_W$$
. What is/are the eigenvalue(s) of A?A. 0B. 1C. -1D. 0, 1E. 1, -1F. 0, -1G. -1, 0, 1

The 1-eigenspace is W.

The 0-eigenspace is W^{\perp} .

We have dim $W + \dim W^{\perp} = n$, so that gives *n* linearly independent eigenvectors already.

So the answer is D.

Projection Matrix Facts

Theorem

Let W be an m-dimensional subspace of \mathbf{R}^n , let $\mathcal{T}: \mathbf{R}^n \to W$ be the projection, and let A be the matrix for \mathcal{T} . Then:

- 1. Col A = W, which is the 1-eigenspace.
- 2. Nul $A = W^{\perp}$, which is the 0-eigenspace.
- 3. $A^2 = A$.
- 4. A is similar to the diagonal matrix with m ones and n m zeros on the diagonal.

Proof of 4: Let v_1, v_2, \ldots, v_m be a basis for W, and let $v_{m+1}, v_{m+2}, \ldots, v_n$ be a basis for W^{\perp} . These are (linearly independent) eigenvectors with eigenvalues 1 and 0, respectively, and they form a basis for \mathbf{R}^n because there are n of them.

Example: If W is a plane in \mathbb{R}^3 , then A is similar to projection onto the xy-plane:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$