
Sections 6.2 and 6.3

Orthogonal Projections



Orthogonal Complements

Definition
Let W be a subspace of Rn.
Its orthogonal complement, written W⊥ (read “W perp”), is the set of all
vectors in Rn which are orthogonal (perpendicular) to W . We will focus on
when n = 2 and n = 3.

Pictures:

The orthogonal complement of a line in R2 is the
perpendicular line. [interactive]

W
W⊥

The orthogonal complement of a line in R3 is the
perpendicular plane. [interactive]

W⊥
W

The orthogonal complement of a plane in R3 is the
perpendicular line. [interactive]

W
W⊥

http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=2,3&captions=orthog
http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=.3,0,1&captions=orthog&range=3
http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=.957,0,-.287&v2=0,1,0&captions=orthog&range=3


Orthogonal Complements
Computation

Problem: if W = Span


 1

1
−1

 ,

1
1
1

, compute W⊥.

Let v1 =

 1
1
−1

 and v2 =

1
1
1

.

A vector u =

x
y
z

 is in W⊥ if and only if u ⊥ v1 and u ⊥ v2.

Why? If u ⊥ v1 and u ⊥ v2, then for any scalars c1 and c2:

u · (c1v1 + c2v2) = c1(u · v1) + c2(u · v2) = c1(0) + c2(0) = 0,

Therefore, u will be orthogonal to every vector in Span{v1, v2}.



Computation, continued

Now u ⊥ v1 means x + y − z = 0 and u ⊥ v2 means x + y + z = 0. This

means u =

x
y
z

 satisfies

x + y − z = 0

x + y + z = 0,

which means u is in Nul

(
1 1 −1
1 1 1

)
. Therefore,

W⊥ = Nul

(
1 1 −1
1 1 1

)
= (... with work ...) = Span


−1

1
0

 .

[interactive]

Span{v1, v2, . . . , vm}⊥ = Nul


— vT

1 —
— vT

2 —...
— vT

m —



http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=1,1,-1&v2=1,1,1&range=3&captions=orthog


Best Approximation

Suppose you measure a data point x which you know for theoretical reasons
must lie on a subspace W .

Wy

x

x − y

Due to measurement error, though, the measured x is not actually in W . Best
approximation: y is the closest point to x on W .

How do you know that y is the closest point? The vector from y to x is
orthogonal to W : it is in the orthogonal complement W⊥.



Orthogonal Decomposition

Theorem
Every vector x in Rn can be written as

x = xW + xW⊥

for unique vectors xW in W and xW⊥ in W⊥.

The equation x = xW + xW⊥ is called the orthogonal decomposition of x
(with respect to W ).

The vector xW is the orthogonal projection of x onto W .

The vector xW is the closest vector to x on W .

[interactive 1] [interactive 2]
WxW

x

xW⊥

http://textbooks.math.gatech.edu/ila/demos/projection.html?u1=1,0,0&u2=0,1.1,-.2&vec=-1.1,2,1.5&range=3&mode=decomp&closed
http://textbooks.math.gatech.edu/ila/demos/projection.html?u1=0,1.1,.2&vec=-1.1,2,1.5&range=3&mode=decomp&closed&subname=W


Orthogonal Decomposition
Example

Let W be the xy -plane in R3. Then W⊥ is the z-axis.

x =

2
1
3

 =⇒ xW =

2
1
0

 xW⊥ =

0
0
3

 .

x =

a
b
c

 =⇒ xW =

a
b
0

 xW⊥ =

0
0
c

 .

This is just decomposing a vector into a “horizontal” component (in the
xy -plane) and a “vertical” component (on the z-axis).

x

xW

xW⊥

W

[interactive]

http://textbooks.math.gatech.edu/ila/demos/projection.html?u1=1,0,0&u2=0,1,0&vec=-1.1,2,1.5&range=3&mode=decomp&closed


Orthogonal Decomposition
Computation?

Problem: Given x and W , how do you compute the decomposition x = xW + xW⊥?

Observation: It is enough to compute xW , because xW⊥ = x − xW .



The ATA Trick to compute xW and xW⊥

Theorem (The ATA Trick)

Let W be a subspace of Rn, let v1, v2, . . . , vm be a spanning set for W (e.g., a
basis), and let

A =

 | | |
v1 v2 · · · vm
| | |

 .

Then for any x in Rn, the matrix equation

ATAv = AT x (in the unknown vector v)

is consistent, and xW = Av for any solution v .

I Write W as a column space of a matrix A.

I Find a solution v of ATAv = AT x (by row reducing).

I Then xW = Av and xW⊥ = x − xW .

Recipe for Computing x = xW + xW⊥



The ATA Trick
An Example

Problem: Let

x =

1
2
3

 W =


x1
x2
x3

 in R3
∣∣ x1 − x2 + x3 = 0

 .

Find xW , xW⊥ , and the distance from x to W .

The distance from x to W is ‖xW⊥‖, so we need to compute the orthogonal
projection. First we need a basis for W = Nul

(
1 −1 1

)
. This matrix is in

RREF, so the parametric form of the solution set is

x1 = x2 − x3
x2 = x2
x3 = x3

PVF

x1
x2
x3

 = x2

1
1
0

+ x3

−1
0
1

 .

Hence we can take a basis to be
1

1
0

 ,

−1
0
1

 A =

 1 −1
1 0
0 1





The ATA Trick
Example, Continued

Problem: Let

x =

1
2
3

 W =


x1
x2
x3

 in R3
∣∣ x1 − x2 + x3 = 0

 .

Compute the distance from x to W .

We compute

ATA =

(
2 −1
−1 2

)
AT x =

(
3
2

)
.

To solve ATAv = AT x we form an augmented matrix and row reduce:(
2 −1 3
−1 2 2

)
RREF

(
1 0 8/3
0 1 7/3

)
v =

1

3

(
8
7

)
.

xW = Av =
1

3

1
8
7

 xW⊥ = x − xW =
1

3

 2
−2
2

 .

The distance is ‖xW⊥‖ = 1
3

√
4 + 4 + 4 ≈ 1.155. [interactive]

http://textbooks.math.gatech.edu/ila/demos/projection.html?u1=1,0,-1&u2=-1,-2,-1&vec=1,2,3&labels=v1,v2&range=3.5&closed&mode=decomp


The ATA Trick
Proof

Theorem (The ATA Trick)

Let W be a subspace of Rn, let v1, v2, . . . , vm be a spanning set for W (e.g., a
basis), and let

A =

 | | |
v1 v2 · · · vm
| | |

 .

Then for any x in Rn, the matrix equation

ATAv = AT x (in the unknown vector v)

is consistent, and xW = Av for any solution v .

Proof: Let x = xW + xW⊥ . Then xW⊥ is in W⊥ = Nul(AT ), so AT xW⊥ = 0.
Hence

AT x = AT (xW + xW⊥) = AT xW + AT xW⊥ = AT xW .

Since xW is in W = Span{v1, v2, . . . , vm}, we can write

xW = c1v1 + c2v2 + · · ·+ cmvm.

If v = (c1, c2, . . . , cm) then Av = xW , so

AT x = AT xW = ATAv .



Orthogonal Projection onto a Line

Problem: Let L = Span{u} be a line in Rn and let x be a vector in Rn.
Compute xL.

We have to solve uTuv = uT x , where u is an n × 1 matrix. But uTu = u · u
and uT x = u · x are scalars, so

v =
u · x
u · u =⇒ xL = uv =

u · x
u · u u.

The projection of x onto a line L = Span{u} is

xL =
u · x
u · u u xL⊥ = x − xL.

Projection onto a Line

L

u

x

xL =
u · x
u · u

u

xL⊥



Orthogonal Projection onto a Line
Example

Problem: Compute the orthogonal projection of x =
(−6

4

)
onto the line L

spanned by u =
(
3
2

)
, and find the distance from u to L.

xL =
x · u
u · u u =

−18 + 8

9 + 4

(
3
2

)
= −10

13

(
3
2

)
xL⊥ = x − xL =

1

13

(
−48
72

)
.

The distance from x to L is

‖xL⊥‖ =
1

13

√
482 + 722 ≈ 6.656.

L

(
3
2

)
(
−6
4

)

−
10

13

(
3
2

)

[interactive]

http://textbooks.math.gatech.edu/ila/demos/projection.html?u1=3,2&vec=-6,4&labels=u&closed&mode=distance


Projection Matrix
Method 1

Let W be a subspace of Rn and let T : Rn → Rn be the orthogonal projection
with respect to W .

How do you compute the standard matrix A for T?

The same as any other linear transformation:

A =
(
T (e1) T (e2) · · · T (en)

)
.



Projection Matrix
Method 1, Example 1

Problem: Let L = Span
{(

3
2

)}
and let T : R2 → R2 be the orthogonal projection

onto L. Compute the matrix A for T .

It’s easy to compute orthogonal projection onto a line:

T (e1) = (e1)L =
u · e1
u · u u =

3

13

(
3
2

)
T (e2) = (e2)L =

u · e2
u · u u =

2

13

(
3
2

)
 =⇒ A =

1

13

(
9 6
6 4

)
.



Projection Matrix
Method 1, Example 2

Problem: Let

W =


x1
x2
x3

 in R3
∣∣ x1 − x2 + x3 = 0


and let T : R3 → R3 be orthogonal projection onto W . Compute the matrix B
for T .

We computed W = ColA for

A =

 1 −1
1 0
0 1

 .

To compute T (ei ) we have to solve the matrix equation ATAv = AT ei . We
have

ATA =

(
2 −1
−1 2

)
AT ei = the ith column of AT =

(
1 1 0
−1 0 1

)
.



Projection Matrix
Another Example, Continued

Problem: Let

W =


x1
x2
x3

 in R3
∣∣ x1 − x2 + x3 = 0


and let T : R3 → R3 be orthogonal projection onto W . Compute the matrix B
for T .

(
2 −1 1
−1 2 −1

)
RREF

(
1 0 1/3
0 1 −1/3

)
=⇒ T (e1) =

1

3
A

(
1
−1

)
=

1

3

 2
1
−1


(

2 −1 1
−1 2 0

)
RREF

(
1 0 2/3
0 1 1/3

)
=⇒ T (e2) =

1

3
A

(
2
1

)
=

1

3

 1
2
1


(

2 −1 0
−1 2 1

)
RREF

(
1 0 1/3
0 1 2/3

)
=⇒ T (e2) =

1

3
A

(
1
2

)
=

1

3

−11
2


=⇒ B =

1

3

 2 1 −1
1 2 1
−1 1 2

 .



Projection Matrix
Method 2

Theorem
Let {v1, v2, . . . , vm} be a linearly independent set in Rn, and let

A =

 | | |
v1 v2 · · · vm
| | |

 .

Then the m ×m matrix ATA is invertible.

Proof: We’ll show Nul(ATA) = {0}. Suppose ATAv = 0. Then Av is in
Nul(AT ) = Col(A)⊥. But Av is in Col(A) as well, so Av = 0, and hence v = 0
because the columns of A are linearly independent.



Projection Matrix
Method 2

Theorem
Let {v1, v2, . . . , vm} be a linearly independent set in Rn, and let

A =

 | | |
v1 v2 · · · vm
| | |

 .

Then the m ×m matrix ATA is invertible.

Let W be a subspace of Rn and let T : Rn → Rn be the orthogonal projection
with respect to W . Let {v1, v2, . . . , vm} be a basis for W and let A be the
matrix with columns v1, v2, . . . , vm. To compute T (x) = xW you solve
ATAv = Ax ; then xW = Av .

v = (ATA)−1(AT x) =⇒ T (x) = Av =
[
A(ATA)−1AT ]x .

If the columns of A are a basis for W then the matrix for T is

A(ATA)−1AT .



Projection Matrix
Method 2, Example 1

Problem: Let L = Span
{(

3
2

)}
and let T : R2 → R2 be the orthogonal projection

onto L. Compute the matrix A for T .

The set
{(

3
2

)}
is a basis for L, so

A = u(uTu)−1uT =
1

u · u uu
T =

1

13

(
3
2

)(
3 2

)
=

1

13

(
9 6
6 4

)
.

If L = Span{u} is a line in Rn, then the matrix for projection onto L is

1

u · u uu
T .

Matrix of Projection onto a Line



Projection Matrix
Method 2, Example 2

Problem: Let

W =


x1
x2
x3

 in R3
∣∣ x1 − x2 + x3 = 0


and let T : R3 → R3 be orthogonal projection onto W . Compute the matrix B
for T .

In the slides for the last lecture we computed W = ColA for

A =

 1 −1
1 0
0 1

 .

The columns are linearly independent, so they form a basis for W . Hence

B = A(ATA)−1AT = A

(
2 −1
−1 2

)−1

AT =
1

3
A

(
2 1
1 2

)
AT

=
1

3

 2 1 −1
1 2 1
−1 1 2

 .



Poll

Let W be a subspace of Rn which is neither the zero subspace nor all of Rn.

Let A be the matrix for projW . What is/are the eigenvalue(s) of A?

A. 0 B. 1 C. −1 D. 0, 1 E. 1, −1 F. 0, −1 G. −1, 0, 1

Poll

The 1-eigenspace is W .

The 0-eigenspace is W⊥.

We have dimW + dimW⊥ = n, so that gives n linearly independent
eigenvectors already.

So the answer is D.



Projection Matrix
Facts

Theorem
Let W be an m-dimensional subspace of Rn, let T : Rn →W be the projection,
and let A be the matrix for T . Then:

1. ColA = W , which is the 1-eigenspace.

2. NulA = W⊥, which is the 0-eigenspace.

3. A2 = A.

4. A is similar to the diagonal matrix with m ones and n −m zeros on the
diagonal.

Proof of 4: Let v1, v2, . . . , vm be a basis for W , and let vm+1, vm+2, . . . , vn be a
basis for W⊥. These are (linearly independent) eigenvectors with eigenvalues 1
and 0, respectively, and they form a basis for Rn because there are n of them.

Example: If W is a plane in R3, then A is similar to projection onto the
xy -plane:  1 0 0

0 1 0
0 0 0

 .


