Sections 6.2 and 6.3

Orthogonal Projections

Orthogonal Complements

Definition

Let W be a subspace of \mathbf{R}^{n}.
Its orthogonal complement, written W^{\perp} (read " W perp"), is the set of all vectors in \mathbf{R}^{n} which are orthogonal (perpendicular) to W. We will focus on when $n=2$ and $n=3$.

Pictures:

The orthogonal complement of a line in \mathbf{R}^{2} is the perpendicular line.
[interactive]

The orthogonal complement of a line in \mathbf{R}^{3} is the perpendicular plane.
[interactive]

The orthogonal complement of a plane in \mathbf{R}^{3} is the perpendicular line.
[interactive]

Orthogonal Complements

Computation

Problem: if $W=\operatorname{Span}\left\{\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$, compute W^{\perp}.
Let $v_{1}=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$ and $v_{2}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
A vector $u=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ is in W^{\perp} if and only if $u \perp v_{1}$ and $u \perp v_{2}$.
Why? If $u \perp v_{1}$ and $u \perp v_{2}$, then for any scalars c_{1} and c_{2} :

$$
u \cdot\left(c_{1} v_{1}+c_{2} v_{2}\right)=c_{1}\left(u \cdot v_{1}\right)+c_{2}\left(u \cdot v_{2}\right)=c_{1}(0)+c_{2}(0)=0
$$

Therefore, u will be orthogonal to every vector in $\operatorname{Span}\left\{v_{1}, v_{2}\right\}$.

Computation, continued

Now $u \perp v_{1}$ means $x+y-z=0$ and $u \perp v_{2}$ means $x+y+z=0$. This means $u=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ satisfies

$$
\begin{aligned}
& x+y-z=0 \\
& x+y+z=0
\end{aligned}
$$

which means u is in $\operatorname{Nul}\left(\begin{array}{ccc}1 & 1 & -1 \\ 1 & 1 & 1\end{array}\right)$. Therefore,

$$
\begin{aligned}
W^{\perp}=\operatorname{Nul}\left(\begin{array}{ccc}
1 & 1 & -1 \\
1 & 1 & 1
\end{array}\right)= & (\ldots \text { with work } \ldots)=\operatorname{Span}\left\{\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)\right\} . \\
& {[\text { interactive }] }
\end{aligned}
$$

$$
\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}^{\perp}=\operatorname{Nul}\left(\begin{array}{c}
-v_{1}^{T}- \\
-v_{2}^{T}- \\
\vdots \\
-v_{m}^{T}-
\end{array}\right)
$$

Best Approximation

Suppose you measure a data point \times which you know for theoretical reasons must lie on a subspace W.

Due to measurement error, though, the measured x is not actually in W. Best approximation: y is the closest point to x on W.

How do you know that y is the closest point? The vector from y to x is orthogonal to W : it is in the orthogonal complement W^{\perp}.

Orthogonal Decomposition

Theorem

Every vector x in \mathbf{R}^{n} can be written as

$$
x=x_{w}+x_{W \perp}
$$

for unique vectors x_{W} in W and $x_{W \perp}$ in W^{\perp}.
The equation $x=x_{W}+x_{W \perp}$ is called the orthogonal decomposition of x (with respect to W).

The vector x_{W} is the orthogonal projection of x onto W.

The vector x_{W} is the closest vector to x on W. [interactive 1] [interactive 2]

Orthogonal Decomposition

Example

Let W be the $x y$-plane in \mathbf{R}^{3}. Then W^{\perp} is the z-axis.

$$
\begin{aligned}
& x=\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right) \Longrightarrow x_{W}=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right) \quad x_{w \perp}=\left(\begin{array}{l}
0 \\
0 \\
3
\end{array}\right) . \\
& x=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \Longrightarrow x_{w}=\left(\begin{array}{l}
a \\
b \\
0
\end{array}\right)
\end{aligned}
$$

This is just decomposing a vector into a "horizontal" component (in the $x y$-plane) and a "vertical" component (on the z-axis).

Orthogonal Decomposition

Problem: Given x and W, how do you compute the decomposition $x=x_{W}+x_{W \perp}$?
Observation: It is enough to compute x_{W}, because $x_{W \perp}=x-x_{W}$.

The $A^{T} A$ Trick to compute x_{W} and $x_{W \perp}$

Theorem (The $A^{T} A$ Trick)

Let W be a subspace of \mathbf{R}^{n}, let $v_{1}, v_{2}, \ldots, v_{m}$ be a spanning set for W (e.g., a basis), and let

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{m} \\
\mid & \mid & & \mid
\end{array}\right) .
$$

Then for any x in \mathbf{R}^{n}, the matrix equation

$$
\left.A^{T} A v=A^{T} x \quad \text { (in the unknown vector } v\right)
$$

is consistent, and $x_{W}=A v$ for any solution v.

Recipe for Computing $x=x_{W}+x_{W \perp}$

- Write W as a column space of a matrix A.
- Find a solution v of $A^{T} A v=A^{T} x$ (by row reducing).
- Then $x_{w}=A v$ and $x_{W \perp}=x-x_{W}$.

The $A^{T} A$ Trick

An Example

Problem: Let

$$
x=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \quad W=\left\{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \text { in } \mathbf{R}^{3} \mid x_{1}-x_{2}+x_{3}=0\right\}
$$

Find $x_{W}, x_{W \perp}$, and the distance from x to W.
The distance from x to W is $\left\|x_{W} \perp\right\|$, so we need to compute the orthogonal projection. First we need a basis for $W=\operatorname{Nul}\left(\begin{array}{lll}1 & -1 & 1\end{array}\right)$. This matrix is in RREF, so the parametric form of the solution set is

$$
\begin{aligned}
& x_{1}=x_{2}-x_{3} \\
& x_{2}=x_{2} \\
& x_{3}=
\end{aligned} \quad \begin{aligned}
& \text { PVF } \\
& x_{3}
\end{aligned} \quad\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+x_{3}\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) .
$$

Hence we can take a basis to be

$$
\left\{\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)\right\} \quad \text { пй } \quad A=\left(\begin{array}{cc}
1 & -1 \\
1 & 0 \\
0 & 1
\end{array}\right)
$$

The $A^{T} A$ Trick

Example, Continued

Problem: Let

$$
x=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \quad W=\left\{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \text { in } \mathbf{R}^{3} \mid x_{1}-x_{2}+x_{3}=0\right\}
$$

Compute the distance from x to W.
We compute

$$
A^{T} A=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right) \quad A^{T} x=\binom{3}{2}
$$

To solve $A^{T} A v=A^{T} x$ we form an augmented matrix and row reduce:

$$
\begin{gathered}
\left(\begin{array}{rr|r}
2 & -1 & 3 \\
-1 & 2 & 2
\end{array}\right) \quad \stackrel{\text { RREF }}{\text { mun }}\left(\begin{array}{lll}
1 & 0 & 8 / 3 \\
0 & 1 & 7 / 3
\end{array}\right) \quad \text { mn } \rightarrow \quad v=\frac{1}{3}\binom{8}{7} . \\
x_{w}=A v=\frac{1}{3}\left(\begin{array}{l}
1 \\
8 \\
7
\end{array}\right) \quad x_{w \perp}=x-x_{w}=\frac{1}{3}\left(\begin{array}{c}
2 \\
-2 \\
2
\end{array}\right) .
\end{gathered}
$$

The distance is $\left\|x_{W \perp}\right\|=\frac{1}{3} \sqrt{4+4+4} \approx 1.155$.

The $A^{T} A$ Trick

Proof

Theorem (The $A^{T} A$ Trick)
Let W be a subspace of \mathbf{R}^{n}, let $v_{1}, v_{2}, \ldots, v_{m}$ be a spanning set for W (e.g., a basis), and let

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{m} \\
\mid & \mid & & \mid
\end{array}\right)
$$

Then for any x in \mathbf{R}^{n}, the matrix equation

$$
A^{T} A v=A^{T} x \quad(\text { in the unknown vector } v)
$$

is consistent, and $x_{W}=A v$ for any solution v.
Proof: Let $x=x_{W}+x_{W \perp}$. Then $x_{W \perp}$ is in $W^{\perp}=\operatorname{Nul}\left(A^{T}\right)$, so $A^{T} x_{W \perp}=0$. Hence

$$
A^{T} x=A^{T}\left(x_{W}+x_{W \perp}\right)=A^{T} x_{W}+A^{T} x_{W \perp}=A^{T} x_{W} .
$$

Since x_{W} is in $W=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, we can write

$$
x_{W}=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m} .
$$

If $v=\left(c_{1}, c_{2}, \ldots, c_{m}\right)$ then $A v=x_{W}$, so

$$
A^{T} x=A^{T} x_{w}=A^{T} A v
$$

Orthogonal Projection onto a Line

Problem: Let $L=\operatorname{Span}\{u\}$ be a line in \mathbf{R}^{n} and let x be a vector in \mathbf{R}^{n}.
Compute x_{L}.
We have to solve $u^{T} u v=u^{T} x$, where u is an $n \times 1$ matrix. But $u^{T} u=u \cdot u$ and $u^{T} x=u \cdot x$ are scalars, so

$$
v=\frac{u \cdot x}{u \cdot u} \quad \Longrightarrow \quad x_{L}=u v=\frac{u \cdot x}{u \cdot u} u
$$

Projection onto a Line
The projection of x onto a line $L=\operatorname{Span}\{u\}$ is

$$
x_{L}=\frac{u \cdot x}{u \cdot u} u \quad x_{L \perp}=x-x_{L} .
$$

Orthogonal Projection onto a Line

Example

Problem: Compute the orthogonal projection of $x=\binom{-6}{4}$ onto the line L spanned by $u=\binom{3}{2}$, and find the distance from u to L.

$$
x_{L}=\frac{x \cdot u}{u \cdot u} u=\frac{-18+8}{9+4}\binom{3}{2}=-\frac{10}{13}\binom{3}{2} \quad x_{L \perp}=x-x_{L}=\frac{1}{13}\binom{-48}{72} .
$$

The distance from x to L is

$$
\left\|x_{L \perp}\right\|=\frac{1}{13} \sqrt{48^{2}+72^{2}} \approx 6.656
$$

[interactive]

Projection Matrix

Method 1

Let W be a subspace of \mathbf{R}^{n} and let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the orthogonal projection with respect to W.

How do you compute the standard matrix A for T ?
The same as any other linear transformation:

$$
A=\left(\begin{array}{llll}
T\left(e_{1}\right) & T\left(e_{2}\right) & \cdots & T\left(e_{n}\right)
\end{array}\right) .
$$

Projection Matrix

Method 1, Example 1

Problem: Let $L=\operatorname{Span}\left\{\binom{3}{2}\right\}$ and let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the orthogonal projection onto L. Compute the matrix A for T.

It's easy to compute orthogonal projection onto a line:

$$
\left.\begin{array}{l}
T\left(e_{1}\right)=\left(e_{1}\right)_{L}=\frac{u \cdot e_{1}}{u \cdot u} u=\frac{3}{13}\binom{3}{2} \\
T\left(e_{2}\right)=\left(e_{2}\right)_{L}=\frac{u \cdot e_{2}}{u \cdot u} u=\frac{2}{13}\binom{3}{2}
\end{array}\right\} \quad \Longrightarrow \quad A=\frac{1}{13}\left(\begin{array}{ll}
9 & 6 \\
6 & 4
\end{array}\right) .
$$

Projection Matrix

Method 1, Example 2

Problem: Let

$$
W=\left\{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \text { in } \mathbf{R}^{3} \mid x_{1}-x_{2}+x_{3}=0\right\}
$$

and let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be orthogonal projection onto W. Compute the matrix B for T.

We computed $W=\operatorname{Col} A$ for

$$
A=\left(\begin{array}{cc}
1 & -1 \\
1 & 0 \\
0 & 1
\end{array}\right)
$$

To compute $T\left(e_{i}\right)$ we have to solve the matrix equation $A^{T} A v=A^{T} e_{i}$. We have

$$
A^{T} A=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right) \quad A^{T} e_{i}=\text { the } i \text { th column of } A^{T}=\left(\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right) .
$$

Projection Matrix

Another Example, Continued

Problem: Let

$$
W=\left\{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \text { in } \mathbf{R}^{3} \mid x_{1}-x_{2}+x_{3}=0\right\}
$$

and let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be orthogonal projection onto W. Compute the matrix B for T.

$$
\begin{aligned}
& \left(\begin{array}{rr|r}
2 & -1 & 1 \\
-1 & 2 & -1
\end{array}\right) \stackrel{\text { RREF }}{\sim m m}\left(\begin{array}{rr|r}
1 & 0 & 1 / 3 \\
0 & 1 & -1 / 3
\end{array}\right) \Longrightarrow T\left(e_{1}\right)=\frac{1}{3} A\binom{1}{-1}=\frac{1}{3}\left(\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right) \\
& \left(\begin{array}{rr|r}
2 & -1 & 1 \\
-1 & 2 & 0
\end{array}\right) \stackrel{\text { RREF }}{\sim \sim \sim m} \rightarrow\left(\begin{array}{ll|l}
1 & 0 & 2 / 3 \\
0 & 1 & 1 / 3
\end{array}\right) \Longrightarrow T\left(e_{2}\right)=\frac{1}{3} A\binom{2}{1}=\frac{1}{3}\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) \\
& \left(\begin{array}{rr|r}
2 & -1 & 0 \\
-1 & 2 & 1
\end{array}\right) \stackrel{\text { RREF }}{\sim \sim \sim} \rightarrow\left(\begin{array}{ll|r}
1 & 0 & 1 / 3 \\
0 & 1 & 2 / 3
\end{array}\right) \Longrightarrow T\left(e_{2}\right)=\frac{1}{3} A\binom{1}{2}=\frac{1}{3}\left(\begin{array}{r}
-1 \\
1 \\
2
\end{array}\right) \\
& \Longrightarrow B=\frac{1}{3}\left(\begin{array}{rrr}
2 & 1 & -1 \\
1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right) .
\end{aligned}
$$

Projection Matrix

Method 2

Theorem

Let $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ be a linearly independent set in \mathbf{R}^{n}, and let

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{m} \\
\mid & \mid & & \mid
\end{array}\right) .
$$

Then the $m \times m$ matrix $A^{T} A$ is invertible.
Proof: We'll show $\operatorname{Nul}\left(A^{T} A\right)=\{0\}$. Suppose $A^{T} A v=0$. Then $A v$ is in $\operatorname{Nul}\left(A^{T}\right)=\operatorname{Col}(A)^{\perp}$. But $A v$ is in $\operatorname{Col}(A)$ as well, so $A v=0$, and hence $v=0$ because the columns of A are linearly independent.

Projection Matrix

Method 2

Theorem

Let $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ be a linearly independent set in \mathbf{R}^{n}, and let

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{m} \\
\mid & \mid & & \mid
\end{array}\right)
$$

Then the $m \times m$ matrix $A^{T} A$ is invertible.
Let W be a subspace of \mathbf{R}^{n} and let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the orthogonal projection with respect to W. Let $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ be a basis for W and let A be the matrix with columns $v_{1}, v_{2}, \ldots, v_{m}$. To compute $T(x)=x_{W}$ you solve $A^{T} A v=A x$; then $x_{w}=A v$.

$$
v=\left(A^{T} A\right)^{-1}\left(A^{T} x\right) \Longrightarrow T(x)=A v=\left[A\left(A^{T} A\right)^{-1} A^{T}\right] x
$$

If the columns of A are a basis for W then the matrix for T is

$$
A\left(A^{T} A\right)^{-1} A^{T}
$$

Projection Matrix

Method 2, Example 1

Problem: Let $L=\operatorname{Span}\left\{\binom{3}{2}\right\}$ and let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the orthogonal projection onto L. Compute the matrix A for T.

The set $\left\{\binom{3}{2}\right\}$ is a basis for L, so

$$
A=u\left(u^{T} u\right)^{-1} u^{T}=\frac{1}{u \cdot u} u u^{T}=\frac{1}{13}\binom{3}{2}\left(\begin{array}{ll}
3 & 2
\end{array}\right)=\frac{1}{13}\left(\begin{array}{ll}
9 & 6 \\
6 & 4
\end{array}\right) .
$$

Matrix of Projection onto a Line
If $L=\operatorname{Span}\{u\}$ is a line in \mathbf{R}^{n}, then the matrix for projection onto L is

$$
\frac{1}{u \cdot u} u u^{T} .
$$

Projection Matrix

Method 2, Example 2

Problem: Let

$$
W=\left\{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \text { in } \mathbf{R}^{3} \mid x_{1}-x_{2}+x_{3}=0\right\}
$$

and let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be orthogonal projection onto W. Compute the matrix B for T.

In the slides for the last lecture we computed $W=\operatorname{Col} A$ for

$$
A=\left(\begin{array}{cc}
1 & -1 \\
1 & 0 \\
0 & 1
\end{array}\right)
$$

The columns are linearly independent, so they form a basis for W. Hence

$$
\begin{aligned}
B=A\left(A^{T} A\right)^{-1} A^{T}=A\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)^{-1} A^{T} & =\frac{1}{3} A\left(\begin{array}{cc}
2 & 1 \\
1 & 2
\end{array}\right) A^{T} \\
& =\frac{1}{3}\left(\begin{array}{ccc}
2 & 1 & -1 \\
1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right)
\end{aligned}
$$

Let W be a subspace of \mathbf{R}^{n} which is neither the zero subspace nor all of \mathbf{R}^{n}.
Poll
Let A be the matrix for proj_{W}. What is/are the eigenvalue(s) of A ?
A. 0
B. 1 C. -1
D. 0,1
E. $1,-1$
F. $0,-1$
G. $-1,0,1$

The 1-eigenspace is W.
The 0 -eigenspace is W^{\perp}.
We have $\operatorname{dim} W+\operatorname{dim} W^{\perp}=n$, so that gives n linearly independent eigenvectors already.

So the answer is D.

Projection Matrix

Facts

Theorem

Let W be an m-dimensional subspace of \mathbf{R}^{n}, let $T: \mathbf{R}^{n} \rightarrow W$ be the projection, and let A be the matrix for T. Then:

1. $\operatorname{Col} A=W$, which is the 1 -eigenspace.
2. Nul $A=W^{\perp}$, which is the 0-eigenspace.
3. $A^{2}=A$.
4. A is similar to the diagonal matrix with m ones and $n-m$ zeros on the diagonal.

Proof of 4: Let $v_{1}, v_{2}, \ldots, v_{m}$ be a basis for W, and let $v_{m+1}, v_{m+2}, \ldots, v_{n}$ be a basis for W^{\perp}. These are (linearly independent) eigenvectors with eigenvalues 1 and 0 , respectively, and they form a basis for \mathbf{R}^{n} because there are n of them.

Example: If W is a plane in \mathbf{R}^{3}, then A is similar to projection onto the $x y$-plane:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

