Math 1553 Worksheet: Fundamentals and §1.1

Solutions

1. For each equation, determine whether the equation is linear or non-linear. Circle your answer. If the equation is non-linear, briefly justify why it is non-linear.

a) $3x_1 + \sqrt{x_2} = 4$	Linear	Not linear
b) $x^2 + y^2 = z$	Linear	Not linear
c) $e^{\pi}x + \ln(13)y = \sqrt{2} - z$	Linear	Not linear

Solution.

- **a)** Not linear. The $\sqrt{x_2}$ term makes it non-linear.
- **b)** Not linear. It has quadratic terms x^2 and y^2 .
- c) Linear. Don't be fooled: e^{π} and $\ln(13)$ are just the coefficients for x and y, respectively, and $\sqrt{2}$ is a constant term.

If, for example, the second term had been ln(13y) instead of ln(13)y, then y would have been inside the logarithm and the equation would have been non-linear.

2. Consider the following three planes, where we use (x, y, z) to denote points in \mathbb{R}^3 :

$$2x + 4y + 4z = 1$$

$$2x + 5y + 2z = -1$$

$$y + 3z = 8$$

Do all three of the planes intersect? If so, do they intersect at a single point, a line, or a plane?

Solution.

Subtracting the first equation from the second gives us

$$2x + 4y + 4z = 1y - 2z = -2y + 3z = 8.$$

Next, subtracting the second equation from the third gives us

$$2x + 4y + 4z = 1$$
$$y - 2z = -2$$
$$5z = 10$$

so z = 2. We can back-substitute to find y and then x. The second equation is y-2z = -2, so y-2(2) = -2, thus y = 2. The first equation is 2x+4(2)+4(2) = 1, so 2x = -15, thus x = -15/2. We have found that the planes intersect at the point

$$\left(-\frac{15}{2}, 2, 2\right).$$

An alternative method would have been to use augmented matrices to isolate z and then back-substitute:

(2	4	4	1	ת ת ת	(2)	4	4	1)		(2	4	4	1
2	5	2	-1	$\xrightarrow{R_2=R_2-R_1}$	0	1	-2	-2	$\xrightarrow{K_3=K_3-K_2}$	0	1	-2	-2
(o	1	3	8)		0/	1	3	8)	$\xrightarrow{R_3=R_3-R_2}$	0)	0	5	10)

The last line is 5z = 10, so z = 2. From here, back-substitution would give us y = 2 and then $x = -\frac{15}{2}$, just like before.

3. Find all values of *h* so that the lines x + hy = -5 and 2x - 8y = 6 do *not* intersect. For all such *h*, draw the lines x + hy = -5 and 2x - 8y = 6 to verify that they do not intersect.

Solution.

We can use basic algebra, row operations, or geometric intuition.

Using basic algebra: Let's see what happens when the lines do intersect. In that case, there is a point (x, y) where

$$\begin{array}{rcl}
x + hy &= -5\\
2x - 8y &= 6
\end{array}$$

Subtracting twice the first equation from the second equation gives us

$$x + hy = -5$$

(-8-2h)y = 16.

If -8-2h = 0 (so h = -4), then the second line is $0 \cdot y = 16$, which is impossible. In other words, if h = -4 then we cannot find a solution to the system of two equations, so the two lines *do not* intersect.

On the other hand, if $h \neq -4$, then we can solve for *y* above:

$$(-8-2h)y = 16$$
 $y = \frac{16}{-8-2h}$ $y = \frac{8}{-4-h}$.

We can now substitute this value of y into the first equation to find x at the point of intersection:

$$x + hy = -5$$
 $x + h \cdot \frac{8}{-4 - h} = -5$ $x = -5 - \frac{8h}{-4 - h}$

Therefore, the lines fail to intersect if and only if h = -4.

Using intuition from geometry in \mathbb{R}^2 : Two non-identical lines in \mathbb{R}^2 will fail to intersect, if and only if they are parallel. The second line is $y = \frac{1}{4}x - \frac{3}{4}$, so its slope is $\frac{1}{4}$.

If $h \neq 0$, then the first line is $y = -\frac{1}{h}x - \frac{5}{h}$, so the lines are parallel when $-\frac{1}{h} = \frac{1}{4}$, which means h = -4. In this case, the lines are $y = \frac{1}{4}x + \frac{5}{4}$ and $y = \frac{1}{4}x - \frac{3}{4}$, so they are parallel non-intersecting lines.

(If h = 0 then the first line is vertical and the two lines intersect when x = -5).

Using row operations: The problem could be done using augmented matrices, which will soon become our main method for solving systems of equations.

$$\begin{pmatrix} 1 & h & | & -5 \\ 2 & -8 & | & 6 \end{pmatrix} \xrightarrow{R_2 = R_2 - 2R_1} \begin{pmatrix} 1 & h & | & -5 \\ 0 & -8 - 2h & | & 16 \end{pmatrix}$$

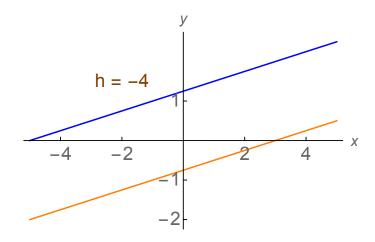
If -8 - 2h = 0 (so h = -4), then the second equation is 0 = 16, so our system has no solutions. In other words, the lines do not intersect.

If $h \neq -4$, then the second equation is (-8 - 2h)y = 16, so

$$y = \frac{16}{-8-2h} = \frac{8}{-4-h}$$
 and $x = -5-hy = -5-\frac{8h}{-4-h}$,

and the lines intersect at (x, y). Therefore, our answer is h = -4.

Here are the two lines for h = -4, and we can see they are different parallel lines.



If we vary h away from -4, then the blue and orange lines will have different slopes and will inevitably intersect. For example,

