Math 1553 Worksheet §2.6, 2.7, 2.9, 3.1

Solutions

1. Circle TRUE if the statement is always true, and circle FALSE otherwise.
a) If A is a 3×100 matrix of rank 2 , then $\operatorname{dim}(\operatorname{Nul} A)=97$.

TRUE FALSE

b) If A is an $m \times n$ matrix and $A x=0$ has only the trivial solution, then the columns of A form a basis for \mathbf{R}^{m}.

TRUE FALSE
c) The set $V=\left\{\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)\right.$ in $\left.\mathbf{R}^{4} \mid x-4 z=0\right\}$ is a subspace of \mathbf{R}^{4}.

TRUE FALSE

Solution.

a) False. By the Rank Theorem, $\operatorname{rank}(A)+\operatorname{dim}(\operatorname{Nul} A)=100$, $\operatorname{sodim}(\operatorname{Nul} A)=98$.
b) False. For example, $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$ has only the trivial solution for $A x=0$, but its column space is a 2-dimensional subspace of \mathbf{R}^{3}.
c) True. V is $\operatorname{Nul}(A)$ for the 1×4 matrix A below, and therefore is automatically a subspace of \mathbf{R}^{4} :

$$
A=\left(\begin{array}{llll}
1 & 0 & -4 & 0
\end{array}\right) .
$$

Alternatively, we could verify the subspace properties directly if we wished, but this is much more work!
(1) The zero vector is in V, since $0-4(0) 0=0$.
(2) Let $u=\left(\begin{array}{c}x_{1} \\ y_{1} \\ z_{1} \\ w_{1}\end{array}\right)$ and $v=\left(\begin{array}{l}x_{2} \\ y_{2} \\ z_{2} \\ w_{2}\end{array}\right)$ be in V, so $x_{1}-4 z_{1}=0$ and $x_{2}-4 z_{2}=0$.

We compute

$$
u+v=\left(\begin{array}{c}
x_{1}+x_{2} \\
y_{1}+y_{2} \\
z_{1}+z_{2} \\
w_{1}+w_{2}
\end{array}\right)
$$

Is $\left(x_{1}+x_{2}\right)-4\left(z_{1}+z_{2}\right)=0$? Yes, since

$$
\left(x_{1}+x_{2}\right)-4\left(z_{1}+z_{2}\right)=\left(x_{1}-4 z_{1}\right)+\left(x_{2}-4 z_{2}\right)=0+0=0 .
$$

(3) If $u=\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)$ is in V then so is $c u$ for any scalar c :

$$
c u=\left(\begin{array}{l}
c x \\
c y \\
c z \\
c w
\end{array}\right) \quad \text { and } \quad c x-4 c z=c(x-4 z)=c(0)=0 .
$$

2. Write a matrix A so that $\operatorname{Col} A=\operatorname{Span}\left\{\left(\begin{array}{c}1 \\ -3 \\ 1\end{array}\right)\right\}$ and $\operatorname{Nul} A$ is the $x z$-plane.

Solution.

Many examples are possible. We'd like to design an A with the prescribed column span, so that $(A \mid 0)$ will have free variables x_{1} and x_{3}. One way to do this is simply to leave the x_{1} and x_{3} columns blank, and make the second column $\left(\begin{array}{c}1 \\ -3 \\ 1\end{array}\right)$. This guarantees that A destroys the $x z$-plane and has the column span required.

$$
A=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & -3 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

An alternative method for finding the same matrix: Write $A=\left(\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right)$. We want the column span to be the span of $\left(\begin{array}{c}1 \\ -3 \\ 1\end{array}\right)$ and we want

$$
A\left(\begin{array}{l}
x \\
0 \\
z
\end{array}\right)=\left(\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right)\left(\begin{array}{c}
x \\
0 \\
z
\end{array}\right)=x v_{1}+z v_{3}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad \text { for all } x \text { and } z .
$$

One way to do this is choose $v_{1}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ and $v_{3}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$, and $v_{2}=\left(\begin{array}{c}1 \\ -3 \\ 1\end{array}\right)$.
3. Let $A=\left(\begin{array}{cccc}1 & -5 & -2 & -4 \\ 2 & 3 & 9 & 5 \\ 1 & 1 & 4 & 2\end{array}\right)$, and let T be the matrix transformation associated to A, so $T(x)=A x$.
a) What is the domain of T ? What is the codomain of T ? Give an example of a vector in the range of T.
b) The RREF of A is $\left(\begin{array}{llll}1 & 0 & 3 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$. Is there a vector in the codomain of T which is not in the range of T ? Justify your answer.

Solution.

a) The domain is \mathbf{R}^{4}; the codomain is \mathbf{R}^{3}. The vector $0=T(0)$ is contained in the range, as is

$$
\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)=T\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

b) Yes. The range of T is the column span of A, and from the RREF of A we know A only has two pivots, so its column span is a 2-dimensional subspace of \mathbf{R}^{3}. Since $\operatorname{dim}\left(\mathbf{R}^{3}\right)=3$, the range is not equal to \mathbf{R}^{3}.

