Math 1553 Worksheet §3.2, 3.3 Solutions

- **1.** Which of the following transformations *T* are onto? Which are one-to-one? If the transformation is not onto, find a vector not in the range. If the transformation is not one-to-one, find two vectors with the same image.
 - a) Counterclockwise rotation by 32° in \mathbb{R}^2 .
 - **b)** The transformation $T : \mathbf{R}^3 \to \mathbf{R}^2$ defined by T(x, y, z) = (z, x).
 - c) The transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (0, x).

d) The matrix transformation with standard matrix $A = \begin{pmatrix} 1 & 6 \\ -1 & 2 \\ 2 & -1 \end{pmatrix}$.

Solution.

- a) This is both one-to-one and onto. If v is any vector in \mathbf{R}^2 , then there is one and only one vector w such that T(w) = v, namely, the vector that is rotated -32° from *v*.
- **b)** This is onto. If (a, b) is any vector in the codomain \mathbb{R}^2 , then (a, b) = T(b, 0, a), so (a, b) is in the range. It is not one-to-one though: indeed, T(0, 0, 0) =(0,0) = T(0,1,0). Alternatively, we could have observed that T is a matrix transformation and examined its matrix A: T(x) = Ax for

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

Since A has a pivot in every row but not every column, T is onto but not oneto-one.

- c) This is not onto. There is no (x, y, z) such that T(x, y, z) = (1, 0). It is not one-to-one: for instance, T(0,0,0) = (0,0) = T(0,1,0).
- **d)** The transformation T with matrix A is onto if and only if A has a pivot in every row, and it is one-to-one if and only if A has a pivot in every column. So we row reduce:

$$A = \begin{pmatrix} 1 & 6 \\ -1 & 2 \\ 2 & -1 \end{pmatrix} \xrightarrow{} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

This has a pivot in every column, so T is one-to-one. It does not have a pivot in every row, so it is not onto. To find a specific vector b in \mathbf{R}^3 which is not in the image of T, we have to find a $b = (b_1, b_2, b_3)$ such that the matrix equation Ax = b is inconsistent. We row reduce again:

$$(A \mid b) = \begin{pmatrix} 1 & 6 \mid b_1 \\ -1 & 2 \mid b_2 \\ 2 & -1 \mid b_3 \end{pmatrix} \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 0 \mid & \text{don't care} \\ 0 & 1 \mid & \text{don't care} \\ 0 & 0 \mid -3b_1 + 13b_2 + 8b_3 \end{pmatrix}.$$

Hence any b_1, b_2, b_3 for which $-3b_1 + 13b_2 + 8b_3 \neq 0$ will make the equation Ax = b inconsistent. For instance, b = (1, 0, 0) is not in the range of *T*.

- **2.** On your computer, go to the Interactive Transformation Challenge! Complete the Zoom, Reflect, and Scale challenges. If you complete a challenge in the optimal number of steps, the interactive demo will congratulate you. See if you can complete each of these challenges in the optimal number of steps.
- **3.** The second little pig has decided to build his house out of sticks. His house is shaped like a pyramid with a triangular base that has vertices at the points (0,0,0), (2,0,0), (0,2,0), and (1,1,1).

The big bad wolf finds the pig's house and blows it down so that the house is rotated by an angle of 45° in a counterclockwise direction about the *z*-axis (look downward onto the *xy*-plane the way we usually picture the plane as \mathbf{R}^2), and then projected onto the *xy*-plane. Find the standard matrix *A* for the transformation *T* caused by the wolf.

Solution.

First notice that the little pig is a red herring, as it were—this is a question about the linear transformation T described in the last two lines.

To compute the matrix for *T*, we have to compute $T(e_1), T(e_2)$, and $T(e_3)$. To see the picture, let's put ourselves above the *xy*-plane (with the usual orientation of the *x* and *y* axes in the *xy*-plane), looking downward. For e_1 and e_2 , it is as if we are applying $\begin{pmatrix} \cos(45^\circ) & -\sin(45^\circ) \\ \sin(45^\circ) & \cos(45^\circ) \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$ to $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, then putting a zero in the *z*-coordinate each time. We find

$$T(e_1) = T\begin{pmatrix} 1\\0\\0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0 \end{pmatrix} \qquad T(e_2) = T\begin{pmatrix} 0\\1\\0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\1\\0 \end{pmatrix}.$$

Rotating e_3 around the *z*-axis does nothing, and projecting onto the *xy*-plane sends it to zero, so $T(e_3) = 0$. Therefore, the matrix for *T* is

$$A = \begin{pmatrix} | & | & | \\ T(e_1) & T(e_2) & T(e_3) \\ | & | & | \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$