Math 1553 Worksheet §§3.4-3.6

Solutions

1. True or false (justify your answer). Answer true if the statement is always true. Otherwise, answer false.
a) If A is a 3×4 matrix and B is a 4×2 matrix, then the linear transformation Z defined by $Z(x)=A B x$ has domain \mathbf{R}^{3} and codomain \mathbf{R}^{2}.
b) If A is an $n \times n$ matrix and the equation $A x=b$ has at least one solution for each b in \mathbf{R}^{n}, then the solution is unique for each b in \mathbf{R}^{n}.
c) Suppose A is an $n \times n$ matrix and every vector in \mathbf{R}^{n} can be written as a linear combination of the columns of A. Then A must be invertible.

Solution.

a) False. In order for $B x$ to make sense, x must be in \mathbf{R}^{2}, and so $B x$ is in \mathbf{R}^{4} and $A(B x)$ is in \mathbf{R}^{3}. Therefore, the domain of Z is \mathbf{R}^{2} and the codomain of Z is \mathbf{R}^{3}.
b) True. The first part says the transformation $T(x)=A x$ is onto. Since A is $n \times n$, this is the same as saying A is invertible, so T is one-to-one and onto. Therefore, the equation $A x=b$ has exactly one solution for each b in \mathbf{R}^{n}.
c) True. If the columns of A span \mathbf{R}^{n}, then A is invertible by the Invertible Matrix Theorem. We can also see this directly without quoting the IMT:
If the columns of A span \mathbf{R}^{n}, then A has n pivots, so A has a pivot in each row and column, hence its matrix transformation $T(x)=A x$ is one-to-one and onto and thus invertible. Therefore, A is invertible.
2. Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be rotation clockwise by 60°. Let $U: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the linear transformation satisfying $U(1,0)=(-2,1)$ and $U(0,1)=(1,0)$.
a) Find the standard matrix for the composition $U \circ T$ using matrix multiplication.
b) Find the standard matrix for the composition $T \circ U$ using matrix multiplication.
c) Is rotating clockwise by 60° and then performing U, the same as first performing U and then rotating clockwise by 60° ?

Solution.

a) The matrix for T is $\left(\begin{array}{cc}\cos \left(-60^{\circ}\right) & -\sin \left(-60^{\circ}\right) \\ \sin \left(-60^{\circ}\right) & \cos \left(-60^{\circ}\right)\end{array}\right)=\left(\begin{array}{cc}\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right)$.

The matrix for U is $\left(U\left(e_{1}\right) \quad U\left(e_{2}\right)\right)=\left(\begin{array}{cc}-2 & 1 \\ 1 & 0\end{array}\right)$.
The matrix for $U \circ T$ is

$$
\left(\begin{array}{cc}
-2 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right)=\left(\begin{array}{cc}
-1-\frac{\sqrt{3}}{2} & \frac{1}{2}-\sqrt{3} \\
\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right) .
$$

b) The matrix for $T \circ U$ is

$$
\left(\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right)\left(\begin{array}{cc}
-2 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
-1+\frac{\sqrt{3}}{2} & \frac{1}{2} \\
\frac{1}{2}+\sqrt{3} & -\frac{\sqrt{3}}{2}
\end{array}\right) .
$$

c) No. In (a) and (b), we found that the standard matrices for $U \circ T$ and $T \circ U$ are different, so the transformations are different.

