Math 1553 Worksheet §§3.4-3.6 Solutions

- **1.** True or false (justify your answer). Answer true if the statement is *always* true. Otherwise, answer false.
 - a) If *A* is a 3 × 4 matrix and *B* is a 4 × 2 matrix, then the linear transformation *Z* defined by Z(x) = ABx has domain \mathbb{R}^3 and codomain \mathbb{R}^2 .
 - **b)** If *A* is an $n \times n$ matrix and the equation Ax = b has at least one solution for each *b* in \mathbb{R}^n , then the solution is *unique* for each *b* in \mathbb{R}^n .
 - c) Suppose *A* is an $n \times n$ matrix and every vector in \mathbb{R}^n can be written as a linear combination of the columns of *A*. Then *A* must be invertible.

Solution.

- a) False. In order for Bx to make sense, x must be in \mathbb{R}^2 , and so Bx is in \mathbb{R}^4 and A(Bx) is in \mathbb{R}^3 . Therefore, the domain of Z is \mathbb{R}^2 and the codomain of Z is \mathbb{R}^3 .
- **b)** True. The first part says the transformation T(x) = Ax is onto. Since *A* is $n \times n$, this is the same as saying *A* is invertible, so *T* is one-to-one and onto. Therefore, the equation Ax = b has exactly one solution for each *b* in \mathbb{R}^n .
- c) True. If the columns of *A* span \mathbb{R}^n , then *A* is invertible by the Invertible Matrix Theorem. We can also see this directly without quoting the IMT:

If the columns of *A* span \mathbb{R}^n , then *A* has *n* pivots, so *A* has a pivot in each row and column, hence its matrix transformation T(x) = Ax is one-to-one and onto and thus invertible. Therefore, *A* is invertible.

- **2.** Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be rotation *clockwise* by 60°. Let $U : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation satisfying U(1,0) = (-2,1) and U(0,1) = (1,0).
 - a) Find the standard matrix for the composition $U \circ T$ using matrix multiplication.
 - **b)** Find the standard matrix for the composition $T \circ U$ using matrix multiplication.
 - c) Is rotating clockwise by 60° and then performing *U*, the same as first performing *U* and then rotating clockwise by 60° ?

Solution.

- a) The matrix for T is $\begin{pmatrix} \cos(-60^\circ) & -\sin(-60^\circ) \\ \sin(-60^\circ) & \cos(-60^\circ) \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$. The matrix for U is $(U(e_1) \quad U(e_2)) = \begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix}$. The matrix for $U \circ T$ is $\begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} -1 - \frac{\sqrt{3}}{2} & \frac{1}{2} - \sqrt{3} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$.
- **b)** The matrix for $T \circ U$ is

$$\begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 + \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} + \sqrt{3} & -\frac{\sqrt{3}}{2} \end{pmatrix}.$$

c) No. In (a) and (b), we found that the standard matrices for $U \circ T$ and $T \circ U$ are different, so the transformations are different.