Math 1553 Worksheet: Chapter 4 and 5.1

1. Let $A=\left(\begin{array}{rrrr}7 & 1 & 4 & 1 \\ -1 & 0 & 0 & 6 \\ 9 & 0 & 2 & 3 \\ 0 & 0 & 0 & -1\end{array}\right)$
a) Compute $\operatorname{det}(A)$.
b) Compute $\operatorname{det}\left(A^{-1}\right)$ without doing any more work.
c) Compute $\operatorname{det}\left(\left(A^{T}\right)^{5}\right)$ without doing any more work.

Solution.

a) The second column has three zeros, so we expand by cofactors:

$$
\operatorname{det}\left(\begin{array}{rrrr}
7 & 1 & 4 & 1 \\
-1 & 0 & 0 & 6 \\
9 & 0 & 2 & 3 \\
0 & 0 & 0 & -1
\end{array}\right)=-\operatorname{det}\left(\begin{array}{rrr}
-1 & 0 & 6 \\
9 & 2 & 3 \\
0 & 0 & -1
\end{array}\right)
$$

Now we expand the second column by cofactors again:

$$
\cdots=-2 \operatorname{det}\left(\begin{array}{rr}
-1 & 6 \\
0 & -1
\end{array}\right)=(-2)(-1)(-1)=-2 .
$$

b) From our notes, we know $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}=-\frac{1}{2}$.
c) $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)=-2$. By the multiplicative property of determinants, if B is any $n \times n$ matrix, then $\operatorname{det}\left(B^{n}\right)=(\operatorname{det} B)^{n}$, so

$$
\operatorname{det}\left(\left(A^{T}\right)^{5}\right)=\left(\operatorname{det} A^{T}\right)^{5}=(-2)^{5}=-32
$$

2. Play matrix tic-tac-toe!

Instead of X against O, we have 1 against 0 . The 1 -player wins if the final matrix has nonzero determinant, while the 0-player wins if the determinant is zero. You can change who goes first, and you can also modify the size of the matrix.

Click the link above, or copy and paste the url below:
http://textbooks.math.gatech.edu/ila/demos/tictactoe/tictactoe.html
Can you think of a winning strategy for the 0 player who goes first in the 2×2 case? Is there a winning strategy for the 1 player if they go first in the 2×2 case?
3. True or false: If v_{1} and v_{2} are linearly independent eigenvectors of an $n \times n$ matrix A, then they must correspond to different eigenvalues.

Solution.

False. For example, if $A=I_{2}$ then e_{1} and e_{2} are linearly independent eigenvectors both corresponding to the eigenvalue $\lambda=1$.
4. In what follows, T is a linear transformation with matrix A. Find the eigenvectors and eigenvalues of A without doing any matrix calculations. (Draw a picture!)
a) $T=$ projection onto the $x z$-plane in \mathbf{R}^{3}.
b) $T=$ reflection over $y=2 x$ in \mathbf{R}^{2}.

Solution.

a) $T(x, y, z)=(x, 0, z)$, so T fixes every vector in the $x z$-plane and destroys every vector of the form ($0, a, 0$) with a real. Therefore, $\lambda=1$ and $\lambda=0$ are eigenvalues and in fact they are the only eigenvalues since their combined eigenvectors span all of \mathbf{R}^{3}.

The eigenvectors for $\lambda=1$ are all vectors of the form $\left(\begin{array}{c}x \\ 0 \\ z\end{array}\right)$ where at least one of x and z is nonzero, and the eigenvectors for $\lambda=0$ are all vectors of the form $\left(\begin{array}{l}0 \\ y \\ 0\end{array}\right)$ where $y \neq 0$. In other words:
The 1-eigenspace consists of all vectors in Span $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$, while the 0 eigenspace consists of all vectors in Span $\left\{\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right\}$
b) T fixes every vector along the line $y=2 x$, so $\lambda=1$ is an eigenvalue and its eigenvectors are all vectors $\binom{t}{2 t}$ where $t \neq 0$.
T flips every vector along the line perpendicular to $y=2 x$, which is $y=-\frac{1}{2} x$ (for example, $T(-2,1)=(2,-1)$). Therefore, $\lambda=-1$ is an eigenvalue and its eigenvectors are all vectors of the form $\binom{s}{-\frac{1}{2} s}$ where $s \neq 0$.

