## Math 1553 Worksheet §§5.1, 5.2, 5.4

**1.** Answer yes, no, or maybe. Justify your answers. In each case, A is a matrix whose entries are real numbers.

a) Suppose 
$$A = \begin{pmatrix} 3 & 0 & 0 \\ 5 & 1 & 0 \\ -10 & 4 & 7 \end{pmatrix}$$
. Then the characteristic polynomial of  $A$  is  $\det(A - \lambda I) = (3 - \lambda)(1 - \lambda)(7 - \lambda).$ 

- **b)** If *A* is a 3 × 3 matrix with characteristic polynomial  $-\lambda(\lambda 5)^2$ , then the 5eigenspace is 2-dimensional.
- c) If A is an invertible  $2 \times 2$  matrix, then A is diagonalizable.

## Solution.

- a) Yes. Since  $A \lambda I$  is triangular, its determinant is the product of its diagonal entries.
- **b)** Maybe. The geometric multiplicity of  $\lambda = 5$  can be 1 or 2. For example, the

matrix  $\begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 0 \end{pmatrix}$  has a 5-eigenspace which is 2-dimensional, whereas the matrix  $\begin{pmatrix} 5 & 1 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 0 \end{pmatrix}$  has a 5-eigenspace which is 1-dimensional. Both matrices

have characteristic polynomial  $-\lambda(5-\lambda)^2$ .

c) Maybe. The identity matrix is invertible and diagonalizable, but the matrix  $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$  is invertible but not diagonalizable.

**2.** The eigenspaces of some  $2 \times 2$  matrix *A* are drawn below. Write an invertible matrix *C* and a diagonal matrix *D* so that  $A = CDC^{-1}$ .



**Solution**: We choose *D* to be a diagonal matrix whose entries are the eigenvalues of *A*, and *C* a matrix whose columns are corresponding eigenvectors (written in the same order).

The eigenvalues of *A* are  $\lambda_1 = -1$  and  $\lambda_2 = -2$ . The (-1)-eigenspace is spanned by  $v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ . The (-2)-eigenspace is spanned by  $v_2 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ . Therefore, we can choose  $C = \begin{pmatrix} v_1 & v_2 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ -1 & 2 \end{pmatrix}$  and  $D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}$ .

There are other possibilities for *C* and *D*. For example, since  $\operatorname{Span}\left\{\begin{pmatrix}1\\-1\end{pmatrix}\right\} = \operatorname{Span}\left\{\begin{pmatrix}-1\\1\end{pmatrix}\right\}$ , we could have chosen  $v_1 = \begin{pmatrix}-1\\1\end{pmatrix}$  instead. Regardless, if you write any correct answers for *C* and *D* and

go the extra step of carrying out the computation, you will obtain

$$A = CDC^{-1} = -\frac{1}{5} \begin{pmatrix} 8 & 3 \\ 2 & 7 \end{pmatrix}.$$

**3.** Let

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}^{-1}.$$

Find a formula for  $A^n$  (where *n* is a positive integer).

Solution: The matrix A has already been diagonalized for us as  $A = CDC^{-1}$  for the matrices above. We find  $C^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$  so  $A^n = CD^nC^{-1} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2^n} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$  $= \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{1}{2^n} & \frac{1}{2^n} \end{pmatrix}$  $= \begin{pmatrix} 1 & 0 \\ 1 - \frac{1}{2^n} & \frac{1}{2^n} \end{pmatrix}$ .