Math 1553 Worksheet §§5.1, 5.2, 5.4

1. Answer yes, no, or maybe. Justify your answers. In each case, A is a matrix whose entries are real numbers.
a) Suppose $A=\left(\begin{array}{ccc}3 & 0 & 0 \\ 5 & 1 & 0 \\ -10 & 4 & 7\end{array}\right)$. Then the characteristic polynomial of A is

$$
\operatorname{det}(A-\lambda I)=(3-\lambda)(1-\lambda)(7-\lambda)
$$

b) If A is a 3×3 matrix with characteristic polynomial $-\lambda(\lambda-5)^{2}$, then the 5eigenspace is 2 -dimensional.
c) If A is an invertible 2×2 matrix, then A is diagonalizable.

Solution.

a) Yes. Since $A-\lambda I$ is triangular, its determinant is the product of its diagonal entries.
b) Maybe. The geometric multiplicity of $\lambda=5$ can be 1 or 2 . For example, the matrix $\left(\begin{array}{ccc}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 0\end{array}\right)$ has a 5-eigenspace which is 2-dimensional, whereas the matrix $\left(\begin{array}{lll}5 & 1 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 0\end{array}\right)$ has a 5-eigenspace which is 1-dimensional. Both matrices have characteristic polynomial $-\lambda(5-\lambda)^{2}$.
c) Maybe. The identity matrix is invertible and diagonalizable, but the matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ is invertible but not diagonalizable.
2. The eigenspaces of some 2×2 matrix A are drawn below. Write an invertible matrix C and a diagonal matrix D so that $A=C D C^{-1}$.

Solution: We choose D to be a diagonal matrix whose entries are the eigenvalues of A, and C a matrix whose columns are corresponding eigenvectors (written in the same order).

The eigenvalues of A are $\lambda_{1}=-1$ and $\lambda_{2}=-2$.
The (-1)-eigenspace is spanned by $v_{1}=\binom{1}{-1}$.
The (-2)-eigenspace is spanned by $v_{2}=\binom{3}{2}$.
Therefore, we can choose $C=\left(\begin{array}{ll}v_{1} & v_{2}\end{array}\right)=\left(\begin{array}{cc}1 & 3 \\ -1 & 2\end{array}\right)$ and $D=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)=\left(\begin{array}{cc}-1 & 0 \\ 0 & -2\end{array}\right)$.
There are other possibilities for C and D.
For example, since Span $\left\{\binom{1}{-1}\right\}=\operatorname{Span}\left\{\binom{-1}{1}\right\}$, we could have chosen $v_{1}=\binom{-1}{1}$ instead. Regardless, if you write any correct answers for C and D and go the extra step of carrying out the computation, you will obtain

$$
A=C D C^{-1}=-\frac{1}{5}\left(\begin{array}{ll}
8 & 3 \\
2 & 7
\end{array}\right)
$$

3. Let

$$
A=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & \frac{1}{2}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)^{-1}
$$

Find a formula for A^{n} (where n is a positive integer).
Solution: The matrix A has already been diagonalized for us as $A=C D C^{-1}$ for the matrices above. We find $C^{-1}=\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right)$ so

$$
\begin{aligned}
A^{n} & =C D^{n} C^{-1}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{2^{n}}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{2^{n}} & \frac{1}{2^{n}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
1-\frac{1}{2^{n}} & \frac{1}{2^{n}}
\end{array}\right) .
\end{aligned}
$$

