Math 1553 Worksheet §§5.1, 5.2, 5.4

1. Answer yes, no, or maybe. Justify your answers. In each case, A is a matrix whose entries are real numbers.
a) Suppose $A=\left(\begin{array}{ccc}3 & 0 & 0 \\ 5 & 1 & 0 \\ -10 & 4 & 7\end{array}\right)$. Then the characteristic polynomial of A is $\operatorname{det}(A-\lambda I)=(3-\lambda)(1-\lambda)(7-\lambda)$.
b) If A is a 3×3 matrix with characteristic polynomial $-\lambda(\lambda-5)^{2}$, then the 5eigenspace is 2 -dimensional.
c) If A is an invertible 2×2 matrix, then A is diagonalizable.
2. The eigenspaces of some 2×2 matrix A are drawn below. Write an invertible matrix C and a diagonal matrix D so that $A=C D C^{-1}$.

3. Let

$$
A=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & \frac{1}{2}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)^{-1}
$$

Find a formula for A^{n} (where n is a positive integer).

