## Math 1553 Worksheet §§5.1, 5.2, 5.4

**1.** Answer yes, no, or maybe. Justify your answers. In each case, *A* is a matrix whose entries are real numbers.

a) Suppose  $A = \begin{pmatrix} 3 & 0 & 0 \\ 5 & 1 & 0 \\ -10 & 4 & 7 \end{pmatrix}$ . Then the characteristic polynomial of A is  $det(A - \lambda I) = (3 - \lambda)(1 - \lambda)(7 - \lambda).$ 

**b)** If *A* is a  $3 \times 3$  matrix with characteristic polynomial  $-\lambda(\lambda - 5)^2$ , then the 5-eigenspace is 2-dimensional.

c) If A is an invertible  $2 \times 2$  matrix, then A is diagonalizable.

**2.** The eigenspaces of some  $2 \times 2$  matrix *A* are drawn below. Write an invertible matrix *C* and a diagonal matrix *D* so that  $A = CDC^{-1}$ .



**3.** Let

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}^{-1}.$$

Find a formula for  $A^n$  (where *n* is a positive integer).