
Supplemental problems: §§2.6, 2.7, 2.9

1. Circle TRUE if the statement is always true, and circle FALSE otherwise.

a) If A is a 3× 100 matrix of rank 2, then dim(Nul A) = 97.

TRUE FALSE

b) If A is an m×n matrix and Ax = 0 has only the trivial solution, then the columns
of A form a basis for Rm.

TRUE FALSE

c) The set V =

















x
y
z
w






in R4

�

�

� x − 4z = 0











is a subspace of R4.

TRUE FALSE

Solution.

a) False. By the Rank Theorem, rank(A)+dim(Nul A) = 100, so dim(Nul A) = 98.

b) False. For example, A=

 

1 0
0 1
0 0

!

has only the trivial solution for Ax = 0, but

its column space is a 2-dimensional subspace of R3.

c) True. V is Nul(A) for the 1× 4 matrix A below, and therefore is automatically
a subspace of R4:

A=
�

1 0 −4 0
�

.

Alternatively, we could verify the subspace properties directly if we wished,
but this is much more work!

(1) The zero vector is in V , since 0− 4(0)0= 0.

(2) Let u=







x1
y1
z1
w1






and v =







x2
y2
z2
w2






be in V , so x1−4z1 = 0 and x2−4z2 = 0.

We compute

u+ v =







x1 + x2
y1 + y2
z1 + z2

w1 +w2






.

Is (x1 + x2)− 4(z1 + z2) = 0? Yes, since

(x1 + x2)− 4(z1 + z2) = (x1 − 4z1) + (x2 − 4z2) = 0+ 0= 0.
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(3) If u=







x
y
z
w






is in V then so is cu for any scalar c:

cu=







cx
c y
cz
cw






and cx − 4cz = c(x − 4z) = c(0) = 0.

2. Write a matrix A so that Col A= Span

( 

1
−3
1

!)

and Nul A is the xz-plane.

Solution.
Many examples are possible. We’d like to design an A with the prescribed column
span, so that

�

A 0
�

will have free variables x1 and x3. One way to do this is simply

to leave the x1 and x3 columns blank, and make the second column

 

1
−3
1

!

. This

guarantees that A destroys the xz-plane and has the column span required.

A=

 

0 1 0
0 −3 0
0 1 0

!

.

An alternative method for finding the same matrix: Write A =
�

v1 v2 v3

�

. We

want the column span to be the span of

 

1
−3
1

!

and we want

A

 

x
0
z

!

=
�

v1 v2 v3

�

 

x
0
z

!

= x v1 + zv3 =

 

0
0
0

!

for all x and z.

One way to do this is choose v1 =

 

0
0
0

!

and v3 =

 

0
0
0

!

, and v2 =

 

1
−3
1

!

.

3. Circle T if the statement is always true, and circle F otherwise. You do not need to
explain your answer.

a) If {v1, v2, v3, v4} is a basis for a subspace V of Rn, then {v1, v2, v3} is a linearly
independent set.

b) The solution set of a consistent matrix equation Ax = b is a subspace.

c) A translate of a span is a subspace.

Solution.
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a) True. If {v1, v2, v3} is linearly dependent then {v1, v2, v3, v4} is automatically
linearly dependent, which is impossible since {v1, v2, v3, v4} is a basis for a sub-
space.

b) False. this is true if and only if b = 0, i.e., the equation is homogeneous, in
which case the solution set is the null space of A.

c) False. A subspace must contain 0.

4. True or false (justify your answer). Answer true if the statement is always true.
Otherwise, answer false.

a) There exists a 3× 5 matrix with rank 4.

b) If A is an 9× 4 matrix with a pivot in each column, then

Nul A= {0}.

c) There exists a 4× 7 matrix A such that nullity A= 5.

d) If {v1, v2, . . . , vn} is a basis for R4, then n= 4.

Solution.

a) False. The rank is the dimension of the column space, which is a subspace of
R3, hence has dimension at most 3.

b) True.

c) True. For instance,

A=







1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0






.

d) True. Any basis of R4 has 4 vectors.

5. Find bases for the column space and the null space of

A=

 

0 1 −3 1 0
1 −1 8 −7 1
−1 −2 1 4 −1

!

.

Solution.

The RREF of
�

A 0
�

is
 

1 0 5 −6 1 0
0 1 −3 1 0 0
0 0 0 0 0 0

!

,
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so x3, x4, x5 are free, and










x1
x2
x3
x4
x5











=











−5x3 + 6x4 − x5
3x3 − x4

x3
x4
x5











= x3











−5
3
1
0
0











+ x4











6
−1
0
1
0











+ x5











−1
0
0
0
1











.

Therefore, a basis for Nul A is





























−5
3
1
0
0











,











6
−1
0
1
0











,











−1
0
0
0
1





























.

To find a basis for Col A, we use the pivot columns as they were written in the
original matrix A, not its RREF. These are the first two columns:

( 

0
1
−1

!

,

 

1
−1
−2

!)

.

6. Find a basis for the subspace V of R4 given by

V =

















x
y
z
w






in R4

�

�

� x + 2y − 3z +w= 0











.

Solution.

V is Nul A for the 1×4 matrix A=
�

1 2 −3 1
�

. The augmented matrix
�

A 0
�

=
�

1 2 −3 1 0
�

gives x = −2y + 3z − w where y, z, w are free variables. The
parametric vector form for the solution set to Ax = 0 is







x
y
z
w






=







−2y + 3z −w
y
z
w






= y







−2
1
0
0






+ z







3
0
1
0






+w







−1
0
0
1






.

Therefore, a basis for V is
















−2
1
0
0






,







3
0
1
0






,







−1
0
0
1

















.

7. a) True or false: If A is an m× n matrix and Nul(A) = Rn, then Col(A) = {0}.

b) Give an example of 2 × 2 matrix whose column space is the same as its null
space.
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c) True or false: For some m, we can find an m×10 matrix A whose column span
has dimension 4 and whose solution set for Ax = 0 has dimension 5.

Solution.

a) If Nul(A) = Rn then Ax = 0 for all x in Rn, so the only element in Col(A) is {0}.
Alternatively, the rank theorem says

dim(Col A)+dim(Nul A) = n =⇒ dim(Col A)+n= n =⇒ dim(Col A) = 0 =⇒ Col A= {0}.

b) Take A=
�

0 1
0 0

�

. Its null space and column space are Span
§�

1
0

�ª

.

c) False. The rank theorem says that the dimensions of the column space (Col A)
and homogeneous solution space (Nul A) add to 10, no matter what m is.

8. Suppose V is a 3-dimensional subspace of R5 containing











1
−4
0
0
0











,











1
0
−3
1
0











, and











9
8
1
0
1











.

Is





























1
−4
0
0
0











,











1
0
−3
1
0











,











9
8
1
0
1





























a basis for V? Justify your answer.

Solution.
Yes. The Basis Theorem says that since we know dim(V ) = 3, our three vectors will
form a basis for V if and only if they are linearly independent.

Call the vectors v1, v2, v3. It is very little work to show that the matrix A=

 

v1
v2
v3

!

has a pivot in every column, so the vectors are linearly independent.

9. a) Write a 2× 2 matrix A with rank 2, and draw pictures of Nul A and Col A.

A=
�

1 0
0 1

�

Nul A = Col A =

b) Write a 2× 2 matrix B with rank 1, and draw pictures of Nul B and Col B.



6 SOLUTIONS

A=
�

1 1
1 1

�

Nul B = Col B =

c) Write a 2× 2 matrix C with rank 0, and draw pictures of Nul C and Col C .

A=
�

0 0
0 0

�

Nul C = Col C =

(In the grids, the dot is the origin.)


