Supplemental problems: §§2.6, 2.7, 2.9

1. Circle TRUE if the statement is always true, and circle FALSE otherwise.
a) If A is a 3×100 matrix of rank 2 , then $\operatorname{dim}(\operatorname{Nul} A)=97$.

TRUE
FALSE
b) If A is an $m \times n$ matrix and $A x=0$ has only the trivial solution, then the columns of A form a basis for \mathbf{R}^{m}.

TRUE FALSE
c) The set $V=\left\{\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)\right.$ in $\left.\mathbf{R}^{4} \mid x-4 z=0\right\}$ is a subspace of \mathbf{R}^{4}.

TRUE FALSE

Solution.

a) False. By the Rank Theorem, $\operatorname{rank}(A)+\operatorname{dim}(\operatorname{Nul} A)=100$, $\operatorname{sodim}(\operatorname{Nul} A)=98$.
b) False. For example, $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$ has only the trivial solution for $A x=0$, but its column space is a 2-dimensional subspace of \mathbf{R}^{3}.
c) True. V is $\operatorname{Nul}(A)$ for the 1×4 matrix A below, and therefore is automatically a subspace of \mathbf{R}^{4} :

$$
A=\left(\begin{array}{llll}
1 & 0 & -4 & 0
\end{array}\right) .
$$

Alternatively, we could verify the subspace properties directly if we wished, but this is much more work!
(1) The zero vector is in V, since $0-4(0) 0=0$.
(2) Let $u=\left(\begin{array}{c}x_{1} \\ y_{1} \\ z_{1} \\ w_{1}\end{array}\right)$ and $v=\left(\begin{array}{c}x_{2} \\ y_{2} \\ z_{2} \\ w_{2}\end{array}\right)$ be in V, so $x_{1}-4 z_{1}=0$ and $x_{2}-4 z_{2}=0$. We compute

$$
u+v=\left(\begin{array}{c}
x_{1}+x_{2} \\
y_{1}+y_{2} \\
z_{1}+z_{2} \\
w_{1}+w_{2}
\end{array}\right)
$$

Is $\left(x_{1}+x_{2}\right)-4\left(z_{1}+z_{2}\right)=0$? Yes, since

$$
\left(x_{1}+x_{2}\right)-4\left(z_{1}+z_{2}\right)=\left(x_{1}-4 z_{1}\right)+\left(x_{2}-4 z_{2}\right)=0+0=0 .
$$

(3) If $u=\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)$ is in V then so is $c u$ for any scalar c :

$$
c u=\left(\begin{array}{l}
c x \\
c y \\
c z \\
c w
\end{array}\right) \quad \text { and } \quad c x-4 c z=c(x-4 z)=c(0)=0 .
$$

2. Write a matrix A so that $\operatorname{Col} A=\operatorname{Span}\left\{\left(\begin{array}{c}1 \\ -3 \\ 1\end{array}\right)\right\}$ and $\operatorname{Nul} A$ is the $x z$-plane.

Solution.

Many examples are possible. We'd like to design an A with the prescribed column span, so that $(A \mid 0)$ will have free variables x_{1} and x_{3}. One way to do this is simply to leave the x_{1} and x_{3} columns blank, and make the second column $\left(\begin{array}{c}1 \\ -3 \\ 1\end{array}\right)$. This guarantees that A destroys the $x z$-plane and has the column span required.

$$
A=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & -3 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

An alternative method for finding the same matrix: Write $A=\left(\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right)$. We want the column span to be the span of $\left(\begin{array}{c}1 \\ -3 \\ 1\end{array}\right)$ and we want

$$
A\left(\begin{array}{l}
x \\
0 \\
z
\end{array}\right)=\left(\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right)\left(\begin{array}{l}
x \\
0 \\
z
\end{array}\right)=x v_{1}+z v_{3}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad \text { for all } x \text { and } z .
$$

One way to do this is choose $v_{1}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ and $v_{3}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$, and $v_{2}=\left(\begin{array}{c}1 \\ -3 \\ 1\end{array}\right)$.
3. Circle \mathbf{T} if the statement is always true, and circle \mathbf{F} otherwise. You do not need to explain your answer.
a) If $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis for a subspace V of \mathbf{R}^{n}, then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a linearly independent set.
b) The solution set of a consistent matrix equation $A x=b$ is a subspace.
c) A translate of a span is a subspace.

Solution.

a) True. If $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly dependent then $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is automatically linearly dependent, which is impossible since $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis for a subspace.
b) False. this is true if and only if $b=0$, i.e., the equation is homogeneous, in which case the solution set is the null space of A.
c) False. A subspace must contain 0 .
4. True or false (justify your answer). Answer true if the statement is always true. Otherwise, answer false.
a) There exists a 3×5 matrix with rank 4 .
b) If A is an 9×4 matrix with a pivot in each column, then

$$
\operatorname{Nul} A=\{0\} .
$$

c) There exists a 4×7 matrix A such that nullity $A=5$.
d) If $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for \mathbf{R}^{4}, then $n=4$.

Solution.

a) False. The rank is the dimension of the column space, which is a subspace of \mathbf{R}^{3}, hence has dimension at most 3 .
b) True.
c) True. For instance,

$$
A=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

d) True. Any basis of \mathbf{R}^{4} has 4 vectors.
5. Find bases for the column space and the null space of

$$
A=\left(\begin{array}{ccccc}
0 & 1 & -3 & 1 & 0 \\
1 & -1 & 8 & -7 & 1 \\
-1 & -2 & 1 & 4 & -1
\end{array}\right)
$$

Solution.

The RREF of $(A \mid 0)$ is

$$
\left(\begin{array}{rrrrr|r}
1 & 0 & 5 & -6 & 1 & 0 \\
0 & 1 & -3 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),
$$

so x_{3}, x_{4}, x_{5} are free, and

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
-5 x_{3}+6 x_{4}-x_{5} \\
3 x_{3}-x_{4} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=x_{3}\left(\begin{array}{c}
-5 \\
3 \\
1 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
6 \\
-1 \\
0 \\
1 \\
0
\end{array}\right)+x_{5}\left(\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
1
\end{array}\right) .
$$

Therefore, a basis for Nul A is $\left\{\left(\begin{array}{c}-5 \\ 3 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}6 \\ -1 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right)\right\}$.
To find a basis for $\operatorname{Col} A$, we use the pivot columns as they were written in the original matrix A, not its RREF. These are the first two columns:

$$
\left\{\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right)\right\} .
$$

6. Find a basis for the subspace V of \mathbf{R}^{4} given by

$$
V=\left\{\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right) \text { in } \mathbf{R}^{4} \mid x+2 y-3 z+w=0\right\} .
$$

Solution.

V is $\operatorname{Nul} A$ for the 1×4 matrix $A=\left(\begin{array}{llll}1 & 2 & -3 & 1\end{array}\right)$. The augmented matrix $(A \mid 0)=$ $\left(\left.\begin{array}{llll}1 & 2 & -3 & 1\end{array} \right\rvert\, 0\right.$) gives $x=-2 y+3 z-w$ where y, z, w are free variables. The parametric vector form for the solution set to $A x=0$ is

$$
\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{c}
-2 y+3 z-w \\
y \\
z \\
w
\end{array}\right)=y\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right)+z\left(\begin{array}{l}
3 \\
0 \\
1 \\
0
\end{array}\right)+w\left(\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right) .
$$

Therefore, a basis for V is

$$
\left\{\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
3 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right)\right\}
$$

7. a) True or false: If A is an $m \times n$ matrix and $\operatorname{Nul}(A)=\mathbf{R}^{n}$, then $\operatorname{Col}(A)=\{0\}$.
b) Give an example of 2×2 matrix whose column space is the same as its null space.
c) True or false: For some m, we can find an $m \times 10$ matrix A whose column span has dimension 4 and whose solution set for $A x=0$ has dimension 5 .

Solution.

a) If $\operatorname{Nul}(A)=\mathbf{R}^{n}$ then $A x=0$ for all x in \mathbf{R}^{n}, so the only element in $\operatorname{Col}(A)$ is $\{0\}$. Alternatively, the rank theorem says
$\operatorname{dim}(\operatorname{Col} A)+\operatorname{dim}(\operatorname{Nul} A)=n \Longrightarrow \operatorname{dim}(\operatorname{Col} A)+n=n \Longrightarrow \operatorname{dim}(\operatorname{Col} A)=0 \Longrightarrow \operatorname{Col} A=\{0\}$.
b) Take $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. Its null space and column space are $\operatorname{Span}\left\{\binom{1}{0}\right\}$.
c) False. The rank theorem says that the dimensions of the column space $(\operatorname{Col} A)$ and homogeneous solution space $(\operatorname{Nul} A)$ add to 10 , no matter what m is.
8. Suppose V is a 3-dimensional subspace of \mathbf{R}^{5} containing $\left(\begin{array}{c}1 \\ -4 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ 0 \\ -3 \\ 1 \\ 0\end{array}\right)$, and $\left(\begin{array}{l}9 \\ 8 \\ 1 \\ 0 \\ 1\end{array}\right)$. Is $\left\{\left(\begin{array}{c}1 \\ -4 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ 0 \\ -3 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}9 \\ 8 \\ 1 \\ 0 \\ 1\end{array}\right)\right\}$ a basis for V ? Justify your answer.

Solution.

Yes. The Basis Theorem says that since we know $\operatorname{dim}(V)=3$, our three vectors will form a basis for V if and only if they are linearly independent.

Call the vectors v_{1}, v_{2}, v_{3}. It is very little work to show that the matrix $A=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$ has a pivot in every column, so the vectors are linearly independent.
9. a) Write a 2×2 matrix A with rank 2 , and draw pictures of $\operatorname{Nul} A$ and $\operatorname{Col} A$.

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \operatorname{Nul} A=\begin{array}{|l|l|l|l|l|}
\hline & & & & \\
\hline
\end{array}
$$

$\operatorname{Col} A=$

b) Write a 2×2 matrix B with rank 1 , and draw pictures of $\operatorname{Nul} B$ and $\operatorname{Col} B$.

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \quad \mathrm{Nul} B=
$$

$\operatorname{Col} B=$

c) Write a 2×2 matrix C with rank 0 , and draw pictures of $\operatorname{Nul} C$ and $\operatorname{Col} C$.

$$
A=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \quad \text { Nul } C=
$$

$$
\operatorname{Col} C=
$$

(In the grids, the dot is the origin.)

