Supplemental problems: §§2.6, 2.7, 2.9

- 1. Circle TRUE if the statement is always true, and circle FALSE otherwise.
 - a) If *A* is a 3×100 matrix of rank 2, then dim(Nul*A*) = 97.

TRUE FALSE

b) If *A* is an $m \times n$ matrix and Ax = 0 has only the trivial solution, then the columns of *A* form a basis for \mathbb{R}^m .

c) The set
$$V = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \text{ in } \mathbf{R}^4 \mid x - 4z = 0 \right\}$$
 is a subspace of \mathbf{R}^4 .
TRUE FALSE

Solution.

- a) False. By the Rank Theorem, rank(A) + dim(NulA) = 100, so dim(NulA) = 98.
- **b)** False. For example, $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$ has only the trivial solution for Ax = 0, but its column space is a 2-dimensional subspace of \mathbf{R}^3 .
- **c)** True. *V* is Nul(*A*) for the 1×4 matrix *A* below, and therefore is automatically a subspace of \mathbf{R}^4 :

$$A = \begin{pmatrix} 1 & 0 & -4 & 0 \end{pmatrix}.$$

Alternatively, we could verify the subspace properties directly if we wished, but this is much more work!

(1) The zero vector is in *V*, since 0 - 4(0)0 = 0.

(2) Let
$$u = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \\ w_1 \end{pmatrix}$$
 and $v = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \\ w_2 \end{pmatrix}$ be in V, so $x_1 - 4z_1 = 0$ and $x_2 - 4z_2 = 0$.

We compute

$$u + v = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \\ z_1 + z_2 \\ w_1 + w_2 \end{pmatrix}.$$

Is $(x_1 + x_2) - 4(z_1 + z_2) = 0$? Yes, since

$$(x_1 + x_2) - 4(z_1 + z_2) = (x_1 - 4z_1) + (x_2 - 4z_2) = 0 + 0 = 0.$$

(3) If
$$u = \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}$$
 is in V then so is cu for any scalar c :
 $cu = \begin{pmatrix} cx \\ cy \\ cz \\ cw \end{pmatrix}$ and $cx - 4cz = c(x - 4z) = c(0) = 0.$

2. Write a matrix *A* so that $\operatorname{Col} A = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix} \right\}$ and $\operatorname{Nul} A$ is the *xz*-plane.

Solution.

Many examples are possible. We'd like to design an *A* with the prescribed column span, so that $(A \mid 0)$ will have free variables x_1 and x_3 . One way to do this is simply to leave the x_1 and x_3 columns blank, and make the second column $\begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix}$. This guarantees that *A* destroys the *xz*-plane and has the column span required.

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -3 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

An alternative method for finding the same matrix: Write $A = \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix}$. We want the column span to be the span of $\begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix}$ and we want

$$A\begin{pmatrix} x\\0\\z \end{pmatrix} = \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix} \begin{pmatrix} x\\0\\z \end{pmatrix} = xv_1 + zv_3 = \begin{pmatrix} 0\\0\\0 \end{pmatrix} \text{ for all } x \text{ and } z$$

One way to do this is choose $v_1 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ and $v_3 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, and $v_2 = \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix}$.

- **3.** Circle **T** if the statement is always true, and circle **F** otherwise. You do not need to explain your answer.
 - **a)** If $\{v_1, v_2, v_3, v_4\}$ is a basis for a subspace *V* of \mathbb{R}^n , then $\{v_1, v_2, v_3\}$ is a linearly independent set.
 - **b)** The solution set of a consistent matrix equation Ax = b is a subspace.
 - c) A translate of a span is a subspace.

Solution.

- **a)** True. If $\{v_1, v_2, v_3\}$ is linearly dependent then $\{v_1, v_2, v_3, v_4\}$ is automatically linearly dependent, which is impossible since $\{v_1, v_2, v_3, v_4\}$ is a basis for a subspace.
- **b)** False. this is true if and only if b = 0, i.e., the equation is *homogeneous*, in which case the solution set is the null space of *A*.
- c) False. A subspace must contain 0.
- **4.** True or false (justify your answer). Answer true if the statement is *always* true. Otherwise, answer false.
 - **a)** There exists a 3×5 matrix with rank 4.
 - **b)** If *A* is an 9×4 matrix with a pivot in each column, then

$$NulA = \{0\}.$$

- c) There exists a 4×7 matrix *A* such that nullity A = 5.
- **d)** If $\{v_1, v_2, \dots, v_n\}$ is a basis for **R**⁴, then n = 4.

Solution.

- a) False. The rank is the dimension of the column space, which is a subspace of R³, hence has dimension at most 3.
- b) True.
- c) True. For instance,

- **d)** True. Any basis of \mathbf{R}^4 has 4 vectors.
- **5.** Find bases for the column space and the null space of

$$A = \begin{pmatrix} 0 & 1 & -3 & 1 & 0 \\ 1 & -1 & 8 & -7 & 1 \\ -1 & -2 & 1 & 4 & -1 \end{pmatrix}.$$

Solution.

The RREF of $(A \mid 0)$ is

$$\begin{pmatrix} 1 & 0 & 5 & -6 & 1 & | & 0 \\ 0 & 1 & -3 & 1 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{pmatrix},$$

so x_3, x_4, x_5 are free, and

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -5x_3 + 6x_4 - x_5 \\ 3x_3 - x_4 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = x_3 \begin{pmatrix} -5 \\ 3 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 6 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + x_5 \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}.$$

Therefore, a basis for Nul A is
$$\begin{cases} \begin{pmatrix} -5 \\ 3 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 6 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \end{cases}.$$

To find a basis for Col *A*, we use the pivot columns as they were written in the *original* matrix *A*, not its RREF. These are the first two columns:

$$\left\{ \begin{pmatrix} 0\\1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\-2 \end{pmatrix} \right\}.$$

6. Find a basis for the subspace *V* of \mathbf{R}^4 given by

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \text{ in } \mathbf{R}^4 \mid x + 2y - 3z + w = 0 \right\}.$$

Solution.

V is Nul *A* for the 1×4 matrix $A = \begin{pmatrix} 1 & 2 & -3 & 1 \end{pmatrix}$. The augmented matrix $\begin{pmatrix} A & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & -3 & 1 & 0 \end{pmatrix}$ gives x = -2y + 3z - w where *y*, *z*, *w* are free variables. The parametric vector form for the solution set to Ax = 0 is

$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} -2y + 3z - w \\ y \\ z \\ w \end{pmatrix} = y \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + z \begin{pmatrix} 3 \\ 0 \\ 1 \\ 0 \end{pmatrix} + w \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Therefore, a basis for V is

$$\left\{ \begin{pmatrix} -2\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 3\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\0\\1 \end{pmatrix} \right\}.$$

- **7.** a) True or false: If A is an $m \times n$ matrix and Nul(A) = \mathbb{R}^n , then Col(A) = $\{0\}$.
 - **b)** Give an example of 2×2 matrix whose column space is the same as its null space.

c) True or false: For some *m*, we can find an $m \times 10$ matrix *A* whose column span has dimension 4 and whose solution set for Ax = 0 has dimension 5.

Solution.

a) If $Nul(A) = \mathbf{R}^n$ then Ax = 0 for all x in \mathbf{R}^n , so the only element in Col(A) is {0}. Alternatively, the rank theorem says

 $\dim(\operatorname{Col} A) + \dim(\operatorname{Nul} A) = n \implies \dim(\operatorname{Col} A) + n = n \implies \dim(\operatorname{Col} A) = 0 \implies \operatorname{Col} A = \{0\}.$

- **b)** Take $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Its null space and column space are Span $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$.
- **c)** False. The rank theorem says that the dimensions of the column space (Col*A*) and homogeneous solution space (Nul*A*) add to 10, no matter what *m* is.
- **8.** Suppose *V* is a 3-dimensional subspace of \mathbf{R}^5 containing $\begin{pmatrix} 1 \\ -4 \\ 0 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ -3 \\ 1 \\ 0 \end{pmatrix}$, and $\begin{pmatrix} 9 \\ 8 \\ 1 \\ 0 \\ 1 \end{pmatrix}$.

Is
$$\left\{ \begin{pmatrix} 1\\ -4\\ 0\\ 0\\ 0 \end{pmatrix}, \begin{pmatrix} 1\\ 0\\ -3\\ 1\\ 0 \end{pmatrix}, \begin{pmatrix} 9\\ 8\\ 1\\ 0\\ 1 \end{pmatrix} \right\}$$
 a basis for V? Justify your answer.

Solution.

Yes. The Basis Theorem says that since we know $\dim(V) = 3$, our three vectors will form a basis for *V* if and only if they are linearly independent.

Call the vectors v_1, v_2, v_3 . It is very little work to show that the matrix $A = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ has a pivot in every column, so the vectors are linearly independent.

9. a) Write a 2 × 2 matrix *A* with rank 2, and draw pictures of Nul*A* and Col*A*.

b) Write a 2×2 matrix *B* with **rank** 1, and draw pictures of Nul*B* and Col*B*.

c) Write a 2×2 matrix *C* with **rank** 0, and draw pictures of Nul *C* and Col *C*.

(In the grids, the dot is the origin.)