Math 1553 Conceptual question list §§2.6-3.6

Solutions

Worksheet 5 (2.6-3.2)

1. Circle TRUE if the statement is always true, and circle FALSE otherwise.
a) If A is a 3×10 matrix with 2 pivots in its RREF, then $\operatorname{dim}(\operatorname{Nul} A)=8$ and $\operatorname{rank}(A)=2$.

TRUE FALSE
b) If A is an $m \times n$ matrix and $A x=0$ has only the trivial solution, then the transformation $T(x)=A x$ is onto.

TRUE FALSE
c) If $\{a, b, c\}$ is a basis of a linear space V, then $\{a, a+b, b+c\}$ is a basis of V as well.

TRUE FALSE

Solution.

a) True. $\operatorname{rank}(A)$ is the same as number of pivots in $A . \operatorname{dim}(\operatorname{Nul} A)$ is the same as the number of free variables. Moreover by the Rank Theorem, $\operatorname{rank}(A)+$ $\operatorname{dim}(\operatorname{Nul} A)=10$, so $\operatorname{dim}(\operatorname{Nul} A)=10-2=8$.
b) False. For example, $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$ has only the trivial solution for $A x=0$, but its column space is a 2-dimensional subspace of \mathbf{R}^{3}.
c) True. Because a and b are independent, $a+b$ and a are linearly independent, and furthermore a and b are in $\operatorname{Span}\{a, a+b\}$. Next, c is independent from $\{a, b\}$, so $b+c$ is independent from $\{a, a+b\}$, meaning that $\{a, a+b, b+c\}$ is independent by the increasing span criterion. Since $a, a+b, b+c$ are all clearly in $\operatorname{Span}\{a, b, c\}$, by the basis theorem $\{a, a+b, b+c\}$ also form a span for $\operatorname{Span}\{a, b, c\}=V$. Alternatively, we could notice that $a, b, c \in \operatorname{Span}\{a, a+$ $b, b+c\}$, and since $V=\operatorname{Span}\{a, b, c\}$ it is a three-dimensional space spanned by the set of three elements $\{a, a+b, b+c\}$, those three elements must form a basis, by the basis theorem.
2. Write a matrix A so that $\operatorname{Col}(A)$ is the solid blue line and $\operatorname{Nul}(A)$ is the dotted red line drawn below.

Solution.

We'd like to design an A with the prescribed column space Span $\left\{\binom{1}{4}\right\}$ and null space $\operatorname{Span}\left\{\binom{3}{-1}\right\}$.
We start with analyzing the null space. We can write parametric form of the null space:

$$
\binom{x_{1}}{x_{2}}=t\binom{3}{-1} \quad \text { is the same as }\binom{x_{1}}{x_{2}}=\binom{-3 x_{2}}{x_{2}}
$$

Then this implies the RREF of A must be $\left(\begin{array}{ll}1 & 3 \\ 0 & 0\end{array}\right)$.
Now we need to combine the information that column space is Span $\left\{\binom{1}{4}\right\}$. That means the second row must be 4 multiple of the first row. Therefore the second row must be (412). We conclude,

$$
A=\left(\begin{array}{cc}
1 & 3 \\
4 & 12
\end{array}\right)
$$

Note any nonzero scalar multiple of the above matrix is also a solution.
supplemental (2.6-3.2)

1. Circle TRUE if the statement is always true, and circle FALSE otherwise.
a) If A is a 3×100 matrix of rank 2 , then $\operatorname{dim}(\operatorname{Nul} A)=97$.

TRUE
 FALSE

b) If A is an $m \times n$ matrix and $A x=0$ has only the trivial solution, then the columns of A form a basis for \mathbf{R}^{m}.

TRUE FALSE
c) The set $V=\left\{\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)\right.$ in $\left.\mathbf{R}^{4} \mid x-4 z=0\right\}$ is a subspace of \mathbf{R}^{4}.

TRUE FALSE

Solution.

a) False. By the Rank Theorem, $\operatorname{rank}(A)+\operatorname{dim}(\operatorname{Nul} A)=100$, $\operatorname{sodim}(\operatorname{Nul} A)=98$.
b) False. For example, $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$ has only the trivial solution for $A x=0$, but its column space is a 2-dimensional subspace of \mathbf{R}^{3}.
c) True. V is $\operatorname{Nul}(A)$ for the 1×4 matrix A below, and therefore is automatically a subspace of \mathbf{R}^{4} :

$$
A=\left(\begin{array}{llll}
1 & 0 & -4 & 0
\end{array}\right)
$$

Alternatively, we could verify the subspace properties directly if we wished, but this is much more work!
(1) The zero vector is in V, since $0-4(0) 0=0$.
(2) Let $u=\left(\begin{array}{l}x_{1} \\ y_{1} \\ z_{1} \\ w_{1}\end{array}\right)$ and $v=\left(\begin{array}{l}x_{2} \\ y_{2} \\ z_{2} \\ w_{2}\end{array}\right)$ be in V, so $x_{1}-4 z_{1}=0$ and $x_{2}-4 z_{2}=0$. We compute

$$
u+v=\left(\begin{array}{c}
x_{1}+x_{2} \\
y_{1}+y_{2} \\
z_{1}+z_{2} \\
w_{1}+w_{2}
\end{array}\right)
$$

Is $\left(x_{1}+x_{2}\right)-4\left(z_{1}+z_{2}\right)=0$? Yes, since

$$
\left(x_{1}+x_{2}\right)-4\left(z_{1}+z_{2}\right)=\left(x_{1}-4 z_{1}\right)+\left(x_{2}-4 z_{2}\right)=0+0=0 .
$$

(3) If $u=\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)$ is in V then so is $c u$ for any scalar c :

$$
c u=\left(\begin{array}{l}
c x \\
c y \\
c z \\
c w
\end{array}\right) \quad \text { and } \quad c x-4 c z=c(x-4 z)=c(0)=0 .
$$

2. Circle \mathbf{T} if the statement is always true, and circle \mathbf{F} otherwise. You do not need to explain your answer.
a) If $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis for a subspace V of \mathbf{R}^{n}, then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a linearly independent set.
b) The solution set of a consistent matrix equation $A x=b$ is a subspace.
c) A translate of a span is a subspace.

Solution.

a) True. If $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly dependent then $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is automatically linearly dependent, which is impossible since $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis for a subspace.
b) False. this is true if and only if $b=0$, i.e., the equation is homogeneous, in which case the solution set is the null space of A.
c) False. A subspace must contain 0 .
3. True or false (justify your answer). Answer true if the statement is always true. Otherwise, answer false.
a) There exists a 3×5 matrix with rank 4 .
b) If A is an 9×4 matrix with a pivot in each column, then

$$
\operatorname{Nul} A=\{0\} .
$$

c) There exists a 4×7 matrix A such that nullity $A=5$.
d) If $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for \mathbf{R}^{4}, then $n=4$.

Solution.

a) False. The rank is the dimension of the column space, which is a subspace of \mathbf{R}^{3}, hence has dimension at most 3 .
b) True.
c) True. For instance,

$$
A=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

d) True. Any basis of \mathbf{R}^{4} has 4 vectors.
4. a) True or false: If A is an $m \times n$ matrix and $\operatorname{Nul}(A)=\mathbf{R}^{n}$, then $\operatorname{Col}(A)=\{0\}$.
b) Give an example of 2×2 matrix whose column space is the same as its null space.
c) True or false: For some m, we can find an $m \times 10$ matrix A whose column span has dimension 4 and whose solution set for $A x=0$ has dimension 5 .

Solution.

a) If $\operatorname{Nul}(A)=\mathbf{R}^{n}$ then $A x=0$ for all x in \mathbf{R}^{n}, so the only element in $\operatorname{Col}(A)$ is $\{0\}$. Alternatively, the rank theorem says
$\operatorname{dim}(\operatorname{Col} A)+\operatorname{dim}(\operatorname{Nul} A)=n \Longrightarrow \operatorname{dim}(\operatorname{Col} A)+n=n \Longrightarrow \operatorname{dim}(\operatorname{Col} A)=0 \Longrightarrow \operatorname{Col} A=\{0\}$.
b) Take $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. Its null space and column space are $\operatorname{Span}\left\{\binom{1}{0}\right\}$.
c) False. The rank theorem says that the dimensions of the column space $(\operatorname{Col} A)$ and homogeneous solution space $(\operatorname{Nul} A)$ add to 10 , no matter what m is.
5. Fill in the blanks: If A is a 7×6 matrix and the solution set for $A x=0$ is a plane, then the column space of A is a $4 \quad$-dimensional subspace of $R 7$. Reason: $\operatorname{rank}(A)+\operatorname{nullity}(A)=\overline{6 \quad \operatorname{rank}(A)}+2=6 \quad \operatorname{rank}(A)=4$
6. True or false. If the statement is always true, answer TRUE. Otherwise, circle FALSE.
a) The matrix transformation $T\binom{x}{y}=\left(\begin{array}{cc}-1 & 0 \\ 0 & 0\end{array}\right)\binom{x}{y}$ performs reflection across the x-axis in $\mathbf{R}^{2} . \quad$ TRUE (T reflects across the y-axis then projects onto the x-axis)
b) The matrix transformation $T\binom{x}{y}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\binom{x}{y}$ performs rotation counterclockwise by 90° in \mathbf{R}^{2}. TRUE (T rotates clockwise 90°)
7. Let A be a 3×4 matrix with column vectors $v_{1}, v_{2}, v_{3}, v_{4}$, and suppose $v_{2}=2 v_{1}-3 v_{4}$. Consider the matrix transformation $T(x)=A x$.
a) Is it possible that T is one-to-one? If yes, justify why. If no, find distinct vectors v and w so that $T(v)=T(w)$.
b) Is it possible that T is onto? Justify your answer.

Solution.

a) From the linear dependence condition we were given, we get

$$
-2 v_{1}+v_{2}+3 v_{4}=0 .
$$

The corresponding vector equation is just

$$
\left(\begin{array}{llll}
v_{1} & v_{2} & v_{3} & v_{4}
\end{array}\right)\left(\begin{array}{c}
-2 \\
1 \\
0 \\
3
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), \quad \text { so } \quad A\left(\begin{array}{c}
-2 \\
1 \\
0 \\
3
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Therefore, $v=\left(\begin{array}{c}-2 \\ 1 \\ 0 \\ 3\end{array}\right)$ and $w=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)$ both satisfy $A v=A w=0$, so T cannot be one-to-one.
b) Yes. If $\left\{v_{1}, v_{3}, v_{4}\right\}$ is linearly independent then A will have a pivot in every row and T will be onto. Such a matrix A is

$$
A=\left(\begin{array}{cccc}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -3 & 0 & 1
\end{array}\right)
$$

8. Answer each question.
a) Suppose $S: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ is the matrix transformation $S(x)=\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 3\end{array}\right) x$.

Is S one-to-one? NO

Is S onto? YES
b) Suppose $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is given by $T(x, y)=(x-y, x-y)$.

Is T one-to-one? NO
Is T onto? NO
c) Suppose $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is a one-to-one matrix transformation. Which one of the following must be true? (cicle one)

$$
m \geq n
$$

9. Which of the following transformations are onto?

Circle all that apply.
a) $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ that rotates counterclockwise by $\frac{\pi}{12}$ radians.
b) The transformation $T(x)=A x$, where A is a 4×3 matrix with three pivots.
c) $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects across the $y z$-plane.

Solution.

The transformations (a) and (c) are onto. Note that (b) is not onto since A doesn't have a pivot in every row. In (b), range (T) is a 3-dimensional subspace of \mathbf{R}^{4}.

Worksheet 6 (3.3-3.4)

1. If A is a 3×5 matrix and B is a 3×2 matrix, which of the following are defined?
a) $A-B$
b) $A B$
c) $A^{T} B$
d) $B^{T} A$
e) A^{2}

Solution.

Only (c) and (d).
a) $A-B$ is nonsense. In order for $A-B$ to be defined, A and B need to have the same number or rows and same number of columns.
b) $A B$ is undefined since the number of columns of A does not equal the number of rows of B.
c) A^{T} is 5×3 and B is 3×2, so $A^{T} B$ is a 5×2 matrix.
d) B^{T} is 2×3 and A is 3×5, so $B^{T} A$ is a 2×5 matrix.
e) A^{2} is nonsense (can't multiply 3×5 with another 3×5).
2. A is $m \times n$ matrix, B is $n \times m$ matrix. Select proper answers from the box. Multiple answers are possible
a) Take any vector x in \mathbf{R}^{m}, then $A B x$ must be in:

$$
\operatorname{Col}(A), \quad \operatorname{Nul}(A), \quad \operatorname{Col}(B), \quad \operatorname{Nul}(B)
$$

b) Take any vector x in \mathbf{R}^{n}, then BAx must be in:
$\operatorname{Col}(A), \quad \operatorname{Nul}(A), \quad \operatorname{Col}(B), \quad \operatorname{Nul}(B)$
c) If $m>n$, then columns of $A B$ could be linearly independent, dependent
d) If $m>n$, then columns of $B A$ could be linearly independent, dependent
e) If $m>n$ and $A x=0$ has nontrivial solutions, then columns of $B A$ could be linearly independent, dependent

Solution.

Recall, $A B$ can be computed as A multiplying every column of B. That is $A B=$ $\left(\begin{array}{llll}A b_{1} & A b_{2} & \cdots A b_{m}\end{array}\right)$ where $B=\left(\begin{array}{llll}b_{1} & b_{2} & \cdots & b_{m}\end{array}\right)$.
a) $\operatorname{Col}(A)$. Denote $w:=B x$, which is a vector in $\mathbf{R}^{n} . A B x=A(B x)$ is multiplying A with w which will end up with "linear combination of columns of A ". So $A B x$ is in $\operatorname{Col}(A)$.
b) $\operatorname{Col}(B)$. Similarly, $B A x=B(A x)$ is multiplying B with $A x$, a vector in R^{m}, which will end up with "linear combination of columns of B ". So $B A x$ is in $\operatorname{Col}(B)$.
c) dependent. Since $m>n$ means A matrix can have at most n pivots. So $\operatorname{dim}(\operatorname{Col}(A)) \leq n$. Notice from first question we know $\operatorname{Col}(A B) \subset \operatorname{Col}(A)$ which has dimension at most n. That means $A B$ can have at most n pivots. But $A B$ is $m \times m$ matrix, then columns of $A B$ must be dependent.
d) independent, dependent. Both are possible. Since $m>n$ means B matrix can have at most n pivots. then $\operatorname{Col}(B A) \subset \operatorname{Col}(B)$ means $B A$ can have at most n pivots. Since $B A$ is $n \times n$ matrix, then the columns of $B A$ will be linearly independent when there are n pivots or linearly dependent when there are less than n pivots. Here are two examples.

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right), B=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \text {, then } B A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right), B=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \text {, then } B A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

e) dependent. From the second example above, $B A$ has dependent columns, we know "dependent" is one possible answer. Now to see if "independent" is also possible, we need to find out if $B A$ could have n pivots.

Since $A x=0$ has nontrivial solution say x^{*}, then x^{*} is also a nontrivial solution of $B A x=0$. That means $B A$ has free variables, and it can not have n pivots. So columns of $B A$ must be linearly dependent.
To summarize what we are actually study here, there are several relations between these subspaces.

$$
\begin{aligned}
& \operatorname{Col}(A B) \subset \operatorname{Col}(A) ; \\
& \operatorname{Col}(B A) \subset \operatorname{Col}(B) ; \\
& \operatorname{Nul}(A) \subset \operatorname{Nul}(B A) ; \\
& \operatorname{Nul}(B) \subset \operatorname{Nul}(A B) ;
\end{aligned}
$$

1. Circle \mathbf{T} if the statement is always true, and circle \mathbf{F} otherwise.
a) $\mathbf{T} \quad \mathbf{F} \quad$ If $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is linear and $T\left(e_{1}\right)=T\left(e_{2}\right)$, then the homogeneous equation $T(x)=0$ has infinitely many solutions.
b) $\quad \mathbf{T} \quad \mathbf{F} \quad$ If $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is a one-to-one linear transformation and $m \neq n$, then T must not be onto.

Solution.

a) True. The matrix transformation $T(x)=A x$ is not one-to-one, so $A x=0$ has infinitely many solutions. For example, $e_{1}-e_{2}$ is a non-trivial solution to $A x=0$ since $A\left(e_{1}-e_{2}\right)=A e_{1}-A e_{2}=0$.
b) True. Let A be the $m \times n$ standard matrix for T. If T is both one-to-one and onto then T must have a pivot in each column and in each row, which is only possible when A is a square matrix $(m=n)$.
2. Consider $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ given by

$$
T(x, y, z)=(x, x+z, 3 x-4 y+z, x)
$$

Is T one-to-one? Justify your answer.

Solution.

One approach: We form the standard matrix A for T :

$$
A=\left(\begin{array}{lll}
T\left(e_{1}\right) & T\left(e_{2}\right) & T\left(e_{3}\right)
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 1 \\
3 & -4 & 1 \\
1 & 0 & 0
\end{array}\right) .
$$

We row-reduce A until we determine its pivot columns

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 1 \\
3 & -4 & 1 \\
1 & 0 & 0
\end{array}\right) \xrightarrow[R_{3}=R_{3}-3 R_{1}, R_{4}=R_{4}-R_{1}]{R_{2}=R_{2}-R_{1}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -4 & 1 \\
0 & 0 & 0
\end{array}\right) \xrightarrow{R_{2} \leftrightarrow R_{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -4 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) .
$$

A has a pivot in every column, so T is one-to-one.
Alternative approach: T is a linear transformation, so it is one-to-one if and only if the equation $T(x, y, z)=(0,0,0)$ has only the trivial solution. If $T(x, y, z)=(x, x+z, 3 x-4 y+z, x)=(0,0,0,0)$ then $x=0$, and

$$
\begin{aligned}
& x+z=0 \Longrightarrow 0+z=0 \Longrightarrow z=0, \text { and finally } \\
& 3 x-4 y+z=0 \Longrightarrow 0-4 y+0=0 \Longrightarrow y=0
\end{aligned}
$$

so the trivial solution $x=y=z=0$ is the only solution the homogeneous equation. Therefore, T is one-to-one.
3. In each case, determine whether T is linear. Briefly justify.
a) $T\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}, x_{1}+x_{2}, 1\right)$.
b) $T(x, y)=\left(y, x^{1 / 3}\right)$.
c) $T(x, y, z)=2 x-5 z$.

Solution.

a) Not linear. $T(0,0)=(0,0,1) \neq(0,0,0)$.
b) Not linear. The $x^{1 / 3}$ term gives it away. $T(0,2)=\left(0,2^{1 / 3}\right)$ but $2 T(0,1)=$ $(0,2)$.
c) Linear. In fact, $T(v)=A v$ where

$$
A=\left(\begin{array}{lll}
2 & 0 & -5
\end{array}\right) .
$$

4. True or false (justify your answer). Answer true if the statement is always true. Otherwise, answer false.
a) If A and B are matrices and the products $A B$ and $B A$ are both defined, then A and B must be square matrices with the same number of rows and columns.
b) If A, B, and C are nonzero 2×2 matrices satisfying $B A=C A$, then $B=C$.
c) Suppose A is an 4×3 matrix whose associated transformation $T(x)=A x$ is not one-to-one. Then there must be a 3×3 matrix B which is not the zero matrix and satisfies $A B=0$.
d) Suppose $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and $U: \mathbf{R}^{m} \rightarrow \mathbf{R}^{p}$ are one-to-one linear transformations. Then $U \circ T$ is one-to-one. (What if U and T are not necessarily linear?)

Solution.

a) False. For example, if A is any 2×3 matrix and B is any 3×2 matrix, then $A B$ and $B A$ are both defined.
b) False. Take $A=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right), B=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$, and $C=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Then $B A=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ and $B C=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$, but $B \neq C$.
c) True. If T is not one-to-one then there is a non-zero vector v in \mathbf{R}^{3} so that

$$
A v=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

The 3×3 matrix $B=\left(\begin{array}{ccc}\mid & \mid & \mid \\ v & v & v \\ \mid & \mid & \mid\end{array}\right)$ satisfies

$$
A B=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
A v & A v & A v \\
\mid & \mid & \mid
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

d) True. Recall that a transformation S is one-to-one if $S(x)=S(y)$ implies $x=y$ (the same outputs implies the same inputs). Suppose that $U \circ T(x)=U \circ T(y)$. Then $U(T(x))=U(T(y))$, so since U is one-to-one, we have $T(x)=T(y)$. Since T is one-to-one, this implies $x=y$. Therefore, $U \circ T$ is one-to-one. Note that this argument does not use the assumption that U and T are linear transformations.

Alternative: We'll show that $U \circ T(x)=0$ has only the trivial solution. Let A be the matrix for U and B be the matrix for T, and suppose x is a vector satisfying $(U \circ T)(x)=0$. In terms of matrix multiplication, this is equivalent to $A B x=0$. Since U is one-to-one, the only solution to $A v=0$ is $v=0$, so $A(B x)=0 \Longrightarrow B x=0$.

Since T is one-to-one, we know that $B x=0 \Longrightarrow x=0$. Therefore, the equation $(U \circ T)(x)=0$ has only the trivial solution.
5. In each case, use geometric intuition to either give an example of a matrix with the desired properties or explain why no such matrix exists.
a) A 3×3 matrix P, which is not the identity matrix or the zero matrix, and satisfies $P^{2}=P$.
b) A 2×2 matrix A satisfying $A^{2}=I$.
c) A 2×2 matrix A satisfying $A^{3}=-I$.

Solution.

a) Take P to be the natural projection onto the $x y$-plane in \mathbf{R}^{3}, so $P=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$. If you apply P to a vector then the result will be within the $x y$-plane of \mathbf{R}^{3}, so applying P a second time won't change anything, hence $P^{2}=P$.
b) Take A to be matrix for reflection across the line $y=x$, so $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Since A swaps the x and y coordinates, repeating A will swap them back to their original positions, so $A A=I$.
c) Note that $-I$ is the matrix that rotates counterclockwise by 180°, so we need a transformation that will give you counterclockwise rotation by 180° if you do
it three times. One such matrix is the rotation matrix for 60° counterclockwise,

$$
A=\left(\begin{array}{cc}
\cos (\pi / 3) & -\sin (\pi / 3) \\
\sin (\pi / 3) & \cos (\pi / 3)
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
1 & -\sqrt{3} \\
\sqrt{3} & 1
\end{array}\right) .
$$

Another such matrix is $A=-I$.

Worksheet 7 (3.5-3.6)

1. True or false (justify your answer). Answer true if the statement is always true. Otherwise, answer false.
a) If A and B are $n \times n$ matrices and both are invertible, then the inverse of $A B$ is $A^{-1} B^{-1}$.
b) If A is an $n \times n$ matrix and the equation $A x=b$ has at least one solution for each b in \mathbf{R}^{n}, then the solution is unique for each b in \mathbf{R}^{n}.
c) If A is an $n \times n$ matrix and the equation $A x=b$ has at most one solution for each b in \mathbf{R}^{n}, then the solution must be unique for each b in \mathbf{R}^{n}.
d) If A and B are invertible $n \times n$ matrices, then $A+B$ is invertible and $(A+B)^{-1}=$ $A^{-1}+B^{-1}$.
e) If A and B are $n \times n$ matrices and $A B x=0$ has a unique solution, then $A x=0$ has a unique solution.
f) If A is a 3×4 matrix and B is a 4×2 matrix, then the linear transformation Z defined by $Z(x)=A B x$ has domain \mathbf{R}^{3} and codomain \mathbf{R}^{2}.
g) Suppose A is an $n \times n$ matrix and every vector in \mathbf{R}^{n} can be written as a linear combination of the columns of A. Then A must be invertible.

Solution.

a) False. $(A B)^{-1}=B^{-1} A^{-1}$.
b) True. The first part says the transformation $T(x)=A x$ is onto. Since A is $n \times n$, then it has n pivots. This is the same as saying A is invertible, and there is no free variable. Therefore, the equation $A x=b$ has exactly one solution for each b in \mathbf{R}^{n}.
c) True. The first part says the transformation $T(x)=A x$ is one-to-one (namely not multiple-to-one). Since A is $n \times n$, then it has n pivots. Then there is no free variable. Therefore, the equation $A x=b$ has exactly one solution for each b in \mathbf{R}^{n}.
d) False. $A+B$ might not be invertible in the first place. For example, if $A=I_{2}$ and $B=-I_{2}$ then $A+B=0$ which is not invertible. Even in the case when $A+B$ is invertible, it still might not be true that $(A+B)^{-1}=A^{-1}+B^{-1}$. For example, $\left(I_{2}+I_{2}\right)^{-1}=\left(2 I_{2}\right)^{-1}=\frac{1}{2} I_{2}$, whereas $\left(I_{2}\right)^{-1}+\left(I_{2}\right)^{-1}=I_{2}+I_{2}=2 I_{2}$.
e) True. According to the Invertible Matrix Theorem, the product $A B$ is invertible. This implies A is invertible, with inverse $B(A B)^{-1}$:

$$
A \cdot B(A B)^{-1}=(A B)(A B)^{-1}=I_{n}
$$

f) False. In order for $B x$ to make sense, x must be in \mathbf{R}^{2}, and so $B x$ is in \mathbf{R}^{4} and $A(B x)$ is in \mathbf{R}^{3}. Therefore, the domain of Z is \mathbf{R}^{2} and the codomain of Z is \mathbf{R}^{3}.
g) True. If the columns of A span \mathbf{R}^{n}, then A is invertible by the Invertible Matrix Theorem. We can also see this directly without quoting the IMT:

If the columns of A span \mathbf{R}^{n}, then A has n pivots, so A has a pivot in each row and column, hence its matrix transformation $T(x)=A x$ is one-to-one and onto and thus invertible. Therefore, A is invertible.

