Math 1553 Conceptual question list §§2.6-3.6 Solutions

Worksheet 5 (2.6-3.2)

- **1.** Circle **TRUE** if the statement is always true, and circle **FALSE** otherwise.
 - a) If A is a 3×10 matrix with 2 pivots in its RREF, then dim(NulA) = 8 and rank(A) = 2.

TRUE FALSE

b) If A is an $m \times n$ matrix and Ax = 0 has only the trivial solution, then the transformation T(x) = Ax is onto.

TRUE FALSE

c) If {a, b, c} is a basis of a linear space V, then {a, a + b, b + c} is a basis of V as well.

TRUE FALSE

Solution.

- a) True. rank(*A*) is the same as number of pivots in *A*. dim(Nul*A*) is the same as the number of free variables. Moreover by the Rank Theorem, rank(*A*) + dim(Nul*A*) = 10, so dim(Nul*A*) = 10 2 = 8.
- **b)** False. For example, $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$ has only the trivial solution for Ax = 0, but

its column space is a 2-dimensional subspace of \mathbf{R}^3 .

- c) True. Because *a* and *b* are independent, a + b and *a* are linearly independent, and furthermore *a* and *b* are in Span{a, a + b}. Next, *c* is independent from {a, b}, so b + c is independent from {a, a + b}, meaning that {a, a + b, b + c} is independent by the increasing span criterion. Since a, a + b, b + c are all clearly in Span{a, b, c}, by the basis theorem {a, a + b, b + c} also form a span for Span{a, b, c} = *V*. Alternatively, we could notice that $a, b, c \in$ Span{a, a + b, b + c}, and since V = Span{a, b, c} it is a three-dimensional space spanned by the set of three elements {a, a + b, b + c}, those three elements must form a basis, by the basis theorem.
- **2.** Write a matrix *A* so that Col(*A*) is the solid blue line and Nul(*A*) is the dotted red line drawn below.

Solution.

We'd like to design an *A* with the prescribed column space $\operatorname{Span}\left\{\begin{pmatrix}1\\4\end{pmatrix}\right\}$ and null space $\operatorname{Span}\left\{\begin{pmatrix}3\\-1\end{pmatrix}\right\}$.

We start with analyzing the null space. We can write parametric form of the null space:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = t \begin{pmatrix} 3 \\ -1 \end{pmatrix} \quad \text{is the same as } \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -3x_2 \\ x_2 \end{pmatrix}$$

Then this implies the RREF of *A* must be $\begin{pmatrix} 1 & 3 \\ 0 & 0 \end{pmatrix}$.

Now we need to combine the information that column space is Span $\{ \begin{pmatrix} 1 \\ 4 \end{pmatrix} \}$. That means the second row must be 4 multiple of the first row. Therefore the second row must be (4 12). We conclude,

$$A = \begin{pmatrix} 1 & 3 \\ 4 & 12 \end{pmatrix}$$

Note any nonzero scalar multiple of the above matrix is also a solution.

supplemental (2.6-3.2)

1. Circle **TRUE** if the statement is always true, and circle **FALSE** otherwise.

a) If *A* is a 3×100 matrix of rank 2, then dim(Nul*A*) = 97.

TRUE FALSE

b) If *A* is an $m \times n$ matrix and Ax = 0 has only the trivial solution, then the columns of *A* form a basis for \mathbb{R}^m .

c) The set $V = \begin{cases} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}$ in $\mathbf{R}^4 \mid x - 4z = 0 \end{cases}$ is a subspace of \mathbf{R}^4 . **TRUE FALSE**

Solution.

- a) False. By the Rank Theorem, rank(A) + dim(NulA) = 100, so dim(NulA) = 98.
- **b)** False. For example, $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$ has only the trivial solution for Ax = 0, but

its column space is a 2-dimensional subspace of \mathbf{R}^3 .

c) True. *V* is Nul(*A*) for the 1×4 matrix *A* below, and therefore is automatically a subspace of \mathbf{R}^4 :

$$A = \begin{pmatrix} 1 & 0 & -4 & 0 \end{pmatrix}.$$

Alternatively, we could verify the subspace properties directly if we wished, but this is much more work!

(1) The zero vector is in *V*, since 0 - 4(0)0 = 0.

(2) Let
$$u = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \\ w_1 \end{pmatrix}$$
 and $v = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \\ w_2 \end{pmatrix}$ be in *V*, so $x_1 - 4z_1 = 0$ and $x_2 - 4z_2 = 0$.

We compute

$$u + v = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \\ z_1 + z_2 \\ w_1 + w_2 \end{pmatrix}$$

Is $(x_1 + x_2) - 4(z_1 + z_2) = 0$? Yes, since

$$(x_1 + x_2) - 4(z_1 + z_2) = (x_1 - 4z_1) + (x_2 - 4z_2) = 0 + 0 = 0.$$

(3) If
$$u = \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}$$
 is in V then so is cu for any scalar c :
 $cu = \begin{pmatrix} cx \\ cy \\ cz \\ cw \end{pmatrix}$ and $cx - 4cz = c(x - 4z) = c(0) = 0.$

- **2.** Circle **T** if the statement is always true, and circle **F** otherwise. You do not need to explain your answer.
 - **a)** If $\{v_1, v_2, v_3, v_4\}$ is a basis for a subspace *V* of \mathbb{R}^n , then $\{v_1, v_2, v_3\}$ is a linearly independent set.
 - **b)** The solution set of a consistent matrix equation Ax = b is a subspace.
 - c) A translate of a span is a subspace.

Solution.

- **a)** True. If $\{v_1, v_2, v_3\}$ is linearly dependent then $\{v_1, v_2, v_3, v_4\}$ is automatically linearly dependent, which is impossible since $\{v_1, v_2, v_3, v_4\}$ is a basis for a subspace.
- **b)** False. this is true if and only if b = 0, i.e., the equation is *homogeneous*, in which case the solution set is the null space of *A*.
- c) False. A subspace must contain 0.
- **3.** True or false (justify your answer). Answer true if the statement is *always* true. Otherwise, answer false.
 - **a)** There exists a 3×5 matrix with rank 4.
 - **b)** If *A* is an 9×4 matrix with a pivot in each column, then

$$NulA = \{0\}.$$

- c) There exists a 4×7 matrix *A* such that nullity A = 5.
- **d)** If $\{v_1, v_2, \dots, v_n\}$ is a basis for \mathbb{R}^4 , then n = 4.

Solution.

- a) False. The rank is the dimension of the column space, which is a subspace of R³, hence has dimension at most 3.
- b) True.

c) True. For instance,

- **d)** True. Any basis of \mathbf{R}^4 has 4 vectors.
- **4.** a) True or false: If A is an $m \times n$ matrix and Nul(A) = \mathbb{R}^n , then Col(A) = $\{0\}$.
 - **b)** Give an example of 2×2 matrix whose column space is the same as its null space.
 - c) True or false: For some *m*, we can find an $m \times 10$ matrix *A* whose column span has dimension 4 and whose solution set for Ax = 0 has dimension 5.

Solution.

a) If $Nul(A) = \mathbf{R}^n$ then Ax = 0 for all x in \mathbf{R}^n , so the only element in Col(A) is {0}. Alternatively, the rank theorem says

 $\dim(\operatorname{Col} A) + \dim(\operatorname{Nul} A) = n \implies \dim(\operatorname{Col} A) + n = n \implies \dim(\operatorname{Col} A) = 0 \implies \operatorname{Col} A = \{0\}.$

- **b)** Take $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Its null space and column space are Span $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$.
- **c)** False. The rank theorem says that the dimensions of the column space (Col*A*) and homogeneous solution space (Nul*A*) add to 10, no matter what *m* is.
- **5.** Fill in the blanks: If *A* is a 7 × 6 matrix and the solution set for Ax = 0 is a plane, then the column space of *A* is a ________--dimensional subspace of $\mathbf{R}^{[7]}$. Reason: rank(*A*) + nullity(*A*) = 6 rank(*A*) + 2 = 6 rank(*A*) = 4
- **6.** True or false. If the statement is *always* true, answer TRUE. Otherwise, circle FALSE.
 - **a)** The matrix transformation $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ performs reflection across the *x*-axis in **R**². TRUE (*T* reflects across the *y*-axis then projects onto the *x*-axis)
 - **b)** The matrix transformation $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ performs rotation counterclockwise by 90° in **R**². TRUE (*T* rotates clockwise 90°)
- 7. Let *A* be a 3×4 matrix with column vectors v_1, v_2, v_3, v_4 , and suppose $v_2 = 2v_1 3v_4$. Consider the matrix transformation T(x) = Ax.
 - a) Is it possible that *T* is one-to-one? If yes, justify why. If no, find distinct vectors v and w so that T(v) = T(w).

b) Is it possible that *T* is onto? Justify your answer.

Solution.

a) From the linear dependence condition we were given, we get

$$-2\nu_1 + \nu_2 + 3\nu_4 = 0.$$

The corresponding vector equation is just

$$\begin{pmatrix} v_1 & v_2 & v_3 & v_4 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \\ 0 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \text{ so } A \begin{pmatrix} -2 \\ 1 \\ 0 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Therefore, $v = \begin{pmatrix} -2 \\ 1 \\ 0 \\ 3 \end{pmatrix} \text{ and } w = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \text{ both satisfy } Av = Aw = 0, \text{ so } T \text{ cannot be}$

one-to-one.

b) Yes. If $\{v_1, v_3, v_4\}$ is linearly independent then *A* will have a pivot in every row and *T* will be onto. Such a matrix *A* is

$$A = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -3 & 0 & 1 \end{pmatrix}.$$

8. Answer each question.

a) Suppose $S : \mathbf{R}^3 \to \mathbf{R}^2$ is the matrix transformation $S(x) = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{pmatrix} x$. Is *S* one-to-one? NO

Is *S* onto? YES

- **b)** Suppose $T : \mathbb{R}^2 \to \mathbb{R}^2$ is given by T(x, y) = (x y, x y). Is *T* one-to-one? NO
 - Is T onto? NO
- c) Suppose $T : \mathbf{R}^n \to \mathbf{R}^m$ is a one-to-one matrix transformation. Which one of the following *must* be true? (cicle one)

$$m \ge n$$

9. Which of the following transformations are onto? Circle all that apply.

- **a)** $T: \mathbf{R}^2 \to \mathbf{R}^2$ that rotates counterclockwise by $\frac{\pi}{12}$ radians.
- **b)** The transformation T(x) = Ax, where A is a 4×3 matrix with three pivots.
- c) $T : \mathbf{R}^3 \to \mathbf{R}^3$ that reflects across the *yz*-plane.

Solution.

The transformations (a) and (c) are onto. Note that (b) is not onto since A doesn't have a pivot in every row. In (b), range(T) is a 3-dimensional subspace of \mathbb{R}^4 .

Worksheet 6 (3.3-3.4)

- **1.** If *A* is a 3×5 matrix and *B* is a 3×2 matrix, which of the following are defined?
 - **a)** *A*−*B*
 - **b)** *AB*
 - c) $A^T B$
 - **d)** $B^T A$
 - **e)** *A*²

Solution.

Only (c) and (d).

- a) A-B is nonsense. In order for A-B to be defined, A and B need to have the same number or rows and same number of columns.
- **b)** *AB* is undefined since the number of columns of *A* does not equal the number of rows of *B*.
- **c)** A^T is 5×3 and *B* is 3×2 , so $A^T B$ is a 5×2 matrix.
- **d)** B^T is 2 × 3 and A is 3 × 5, so $B^T A$ is a 2 × 5 matrix.
- e) A^2 is nonsense (can't multiply 3×5 with another 3×5).
- **2.** A is $m \times n$ matrix, B is $n \times m$ matrix. Select proper answers from the box. Multiple answers are possible
 - a) Take any vector x in \mathbb{R}^m , then ABx must be in: $\boxed{\operatorname{Col}(A), \operatorname{Nul}(A), \operatorname{Col}(B), \operatorname{Nul}(B)}$
 - **b)** Take any vector x in \mathbb{R}^n , then *BAx must be* in: $\boxed{\operatorname{Col}(A), \operatorname{Nul}(A), \operatorname{Col}(B), \operatorname{Nul}(B)}$

c) If $m > n$, then columns of <i>AB</i> could be linearly	independent,	dependent
d) If $m > n$, then columns of <i>BA</i> could be linearly	independent,	dependent

e) If m > n and Ax = 0 has nontrivial solutions, then columns of BA could be linearly *independent*, *dependent*

Solution.

Recall, *AB* can be computed as *A* multiplying every column of *B*. That is $AB = (Ab_1 \ Ab_2 \ \cdots Ab_m)$ where $B = (b_1 \ b_2 \ \cdots b_m)$.

a) Col(A). Denote w := Bx, which is a vector in \mathbb{R}^n . ABx = A(Bx) is multiplying *A* with *w* which will end up with "linear combination of columns of *A*". So *ABx* is in Col(*A*).

- **b)** Col(*B*). Similarly, BAx = B(Ax) is multiplying *B* with *Ax*, a vector in \mathbb{R}^m , which will end up with "linear combination of columns of *B*". So *BAx* is in Col(*B*).
- c) dependent Since m > n means A matrix can have at most n pivots. So $dim(Col(A)) \le n$. Notice from first question we know $Col(AB) \subset Col(A)$ which has dimension at most n. That means AB can have at most n pivots. But AB is $m \times m$ matrix, then columns of AB must be dependent.
- d) independent, dependent. Both are possible. Since m > n means B matrix can have at most n pivots. then $Col(BA) \subset Col(B)$ means BA can have at most n pivots. Since BA is $n \times n$ matrix, then the columns of BA will be linearly independent when there are n pivots or linearly dependent when there are less than n pivots. Here are two examples.

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \text{ then } BA = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \text{ then } BA = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

e) *dependent*. From the second example above, *BA* has dependent columns, we know "dependent" is one possible answer. Now to see if "independent" is also possible, we need to find out if *BA* could have *n* pivots.

Since Ax = 0 has nontrivial solution say x^* , then x^* is also a nontrivial solution of BAx = 0. That means *BA* has free variables, and it can not have *n* pivots. So columns of *BA* must be linearly dependent.

To summarize what we are actually study here, there are several relations between these subspaces.

$$\operatorname{Col}(AB) \subset \operatorname{Col}(A);$$

 $\operatorname{Col}(BA) \subset \operatorname{Col}(B);$
 $\operatorname{Nul}(A) \subset \operatorname{Nul}(BA);$
 $\operatorname{Nul}(B) \subset \operatorname{Nul}(AB);$

Supplemental (3.3-3.4)

- **1.** Circle **T** if the statement is always true, and circle **F** otherwise.
 - a) **T F** If $T : \mathbf{R}^n \to \mathbf{R}^n$ is linear and $T(e_1) = T(e_2)$, then the homogeneous equation T(x) = 0 has infinitely many solutions.
 - b) **T F** If $T : \mathbf{R}^n \to \mathbf{R}^m$ is a one-to-one linear transformation and $m \neq n$, then *T* must not be onto.

Solution.

- a) True. The matrix transformation T(x) = Ax is not one-to-one, so Ax = 0 has infinitely many solutions. For example, $e_1 e_2$ is a non-trivial solution to Ax = 0 since $A(e_1 e_2) = Ae_1 Ae_2 = 0$.
- **b)** True. Let *A* be the $m \times n$ standard matrix for *T*. If *T* is both one-to-one and onto then *T* must have a pivot in each column and in each row, which is only possible when *A* is a square matrix (m = n).
- **2.** Consider $T : \mathbf{R}^3 \to \mathbf{R}^3$ given by

$$T(x, y, z) = (x, x + z, 3x - 4y + z, x).$$

Is *T* one-to-one? Justify your answer.

Solution.

One approach: We form the standard matrix *A* for *T* :

$$A = \begin{pmatrix} T(e_1) & T(e_2) & T(e_3) \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 3 & -4 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

We row-reduce A until we determine its pivot columns

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 3 & -4 & 1 \\ 1 & 0 & 0 \end{pmatrix} \xrightarrow{R_2 = R_2 - R_1} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -4 & 1 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -4 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

A has a pivot in every column, so T is one-to-one.

Alternative approach: *T* is a linear transformation, so it is one-to-one if and only if $\overline{\text{the equation } T(x, y, z)} = (0, 0, 0)$ has only the trivial solution. If T(x, y, z) = (x, x + z, 3x - 4y + z, x) = (0, 0, 0, 0) then x = 0, and

$$x + z = 0 \implies 0 + z = 0 \implies z = 0$$
, and finally
 $3x - 4y + z = 0 \implies 0 - 4y + 0 = 0 \implies y = 0$,

11

so the trivial solution x = y = z = 0 is the only solution the homogeneous equation. Therefore, *T* is one-to-one.

- **3.** In each case, determine whether *T* is linear. Briefly justify.
 - **a)** $T(x_1, x_2) = (x_1 x_2, x_1 + x_2, 1).$
 - **b)** $T(x, y) = (y, x^{1/3}).$
 - c) T(x, y, z) = 2x 5z.

Solution.

- a) Not linear. $T(0,0) = (0,0,1) \neq (0,0,0)$.
- b) Not linear. The $x^{1/3}$ term gives it away. $T(0,2) = (0,2^{1/3})$ but 2T(0,1) = (0,2).
- **c)** Linear. In fact, T(v) = Av where

$$A = \begin{pmatrix} 2 & 0 & -5 \end{pmatrix}.$$

- **4.** True or false (justify your answer). Answer true if the statement is *always* true. Otherwise, answer false.
 - a) If *A* and *B* are matrices and the products *AB* and *BA* are both defined, then *A* and *B* must be square matrices with the same number of rows and columns.
 - **b)** If *A*, *B*, and *C* are nonzero 2×2 matrices satisfying BA = CA, then B = C.
 - c) Suppose *A* is an 4×3 matrix whose associated transformation T(x) = Ax is not one-to-one. Then there must be a 3×3 matrix *B* which is not the zero matrix and satisfies AB = 0.
 - **d)** Suppose $T : \mathbf{R}^n \to \mathbf{R}^m$ and $U : \mathbf{R}^m \to \mathbf{R}^p$ are one-to-one linear transformations. Then $U \circ T$ is one-to-one. (What if *U* and *T* are not necessarily linear?)

Solution.

a) False. For example, if *A* is any 2×3 matrix and *B* is any 3×2 matrix, then *AB* and *BA* are both defined.

b) False. Take
$$A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, and $C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Then $BA = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
and $BC = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, but $B \neq C$.

c) True. If T is not one-to-one then there is a non-zero vector v in \mathbf{R}^3 so that

$$A\nu = \begin{pmatrix} 0\\0\\0\\0 \end{pmatrix}.$$

The 3 × 3 matrix $B = \begin{pmatrix} | & | & | \\ v & v & v \\ | & | & | \end{pmatrix}$ satisfies

d) True. Recall that a transformation *S* is one-to-one if S(x) = S(y) implies x = y (the same outputs implies the same inputs). Suppose that $U \circ T(x) = U \circ T(y)$. Then U(T(x)) = U(T(y)), so since *U* is one-to-one, we have T(x) = T(y). Since *T* is one-to-one, this implies x = y. Therefore, $U \circ T$ is one-to-one. Note that this argument does not use the assumption that *U* and *T* are linear transformations.

Alternative: We'll show that $U \circ T(x) = 0$ has only the trivial solution. Let *A* be the matrix for *U* and *B* be the matrix for *T*, and suppose *x* is a vector satisfying $(U \circ T)(x) = 0$. In terms of matrix multiplication, this is equivalent to ABx = 0. Since *U* is one-to-one, the only solution to Av = 0 is v = 0, so $A(Bx) = 0 \implies Bx = 0$.

Since *T* is one-to-one, we know that $Bx = 0 \implies x = 0$. Therefore, the equation $(U \circ T)(x) = 0$ has only the trivial solution.

- **5.** In each case, use geometric intuition to either give an example of a matrix with the desired properties or explain why no such matrix exists.
 - a) A 3 × 3 matrix *P*, which is not the identity matrix or the zero matrix, and satisfies $P^2 = P$.
 - **b)** A 2 × 2 matrix A satisfying $A^2 = I$.
 - c) A 2 × 2 matrix A satisfying $A^3 = -I$.

Solution.

a) Take *P* to be the natural projection onto the *xy*-plane in \mathbb{R}^3 , so $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

If you apply *P* to a vector then the result will be within the *xy*-plane of \mathbb{R}^3 , so applying *P* a second time won't change anything, hence $P^2 = P$.

- **b)** Take *A* to be matrix for reflection across the line y = x, so $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Since *A* swaps the *x* and *y* coordinates, repeating *A* will swap them back to their original positions, so AA = I.
- c) Note that -I is the matrix that rotates counterclockwise by 180° , so we need a transformation that will give you counterclockwise rotation by 180° if you do

it three times. One such matrix is the rotation matrix for 60° counterclockwise,

$$A = \begin{pmatrix} \cos(\pi/3) & -\sin(\pi/3) \\ \sin(\pi/3) & \cos(\pi/3) \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}.$$

Another such matrix is A = -I.

Worksheet 7 (3.5-3.6)

- **1.** True or false (justify your answer). Answer true if the statement is *always* true. Otherwise, answer false.
 - a) If *A* and *B* are $n \times n$ matrices and both are invertible, then the inverse of *AB* is $A^{-1}B^{-1}$.
 - **b)** If *A* is an $n \times n$ matrix and the equation Ax = b has at least one solution for each *b* in \mathbb{R}^n , then the solution is *unique* for each *b* in \mathbb{R}^n .
 - c) If *A* is an $n \times n$ matrix and the equation Ax = b has at most one solution for each *b* in \mathbb{R}^n , then the solution must be *unique* for each *b* in \mathbb{R}^n .
 - **d)** If *A* and *B* are invertible $n \times n$ matrices, then A + B is invertible and $(A + B)^{-1} = A^{-1} + B^{-1}$.
 - e) If *A* and *B* are $n \times n$ matrices and ABx = 0 has a unique solution, then Ax = 0 has a unique solution.
 - f) If *A* is a 3 × 4 matrix and *B* is a 4 × 2 matrix, then the linear transformation *Z* defined by Z(x) = ABx has domain \mathbb{R}^3 and codomain \mathbb{R}^2 .
 - **g)** Suppose *A* is an $n \times n$ matrix and every vector in \mathbb{R}^n can be written as a linear combination of the columns of *A*. Then *A* must be invertible.

Solution.

- **a)** False. $(AB)^{-1} = B^{-1}A^{-1}$.
- **b)** True. The first part says the transformation T(x) = Ax is onto. Since A is $n \times n$, then it has n pivots. This is the same as saying A is invertible, and there is no free variable. Therefore, the equation Ax = b has exactly one solution for each b in \mathbb{R}^n .
- c) True. The first part says the transformation T(x) = Ax is one-to-one (namely not multiple-to-one). Since *A* is $n \times n$, then it has *n* pivots. Then there is no free variable. Therefore, the equation Ax = b has exactly one solution for each *b* in \mathbb{R}^n .
- **d)** False. A + B might not be invertible in the first place. For example, if $A = I_2$ and $B = -I_2$ then A + B = 0 which is not invertible. Even in the case when A + B is invertible, it still might not be true that $(A + B)^{-1} = A^{-1} + B^{-1}$. For example, $(I_2 + I_2)^{-1} = (2I_2)^{-1} = \frac{1}{2}I_2$, whereas $(I_2)^{-1} + (I_2)^{-1} = I_2 + I_2 = 2I_2$.
- e) True. According to the Invertible Matrix Theorem, the product *AB* is invertible. This implies *A* is invertible, with inverse $B(AB)^{-1}$:

$$A \cdot B(AB)^{-1} = (AB)(AB)^{-1} = I_n.$$

f) False. In order for Bx to make sense, x must be in \mathbb{R}^2 , and so Bx is in \mathbb{R}^4 and A(Bx) is in \mathbb{R}^3 . Therefore, the domain of Z is \mathbb{R}^2 and the codomain of Z is \mathbb{R}^3 .

- **g)** True. If the columns of *A* span \mathbb{R}^n , then *A* is invertible by the Invertible Matrix Theorem. We can also see this directly without quoting the IMT:
 - If the columns of A span \mathbb{R}^n , then A has n pivots, so A has a pivot in each row and column, hence its matrix transformation T(x) = Ax is one-to-one and onto and thus invertible. Therefore, A is invertible.