## Math 1553 Conceptual question list $\S \S 2.6-3.6$

Worksheet 5 (2.6-3.2)

1. Circle TRUE if the statement is always true, and circle FALSE otherwise.
a) If $A$ is a $3 \times 10$ matrix with 2 pivots in its RREF, then $\operatorname{dim}(\operatorname{Nul} A)=8$ and $\operatorname{rank}(A)=2$.

## TRUE FALSE

b) If $A$ is an $m \times n$ matrix and $A x=0$ has only the trivial solution, then the transformation $T(x)=A x$ is onto.

TRUE FALSE
c) If $\{a, b, c\}$ is a basis of a linear space $V$, then $\{a, a+b, b+c\}$ is a basis of $V$ as well.

TRUE FALSE
2. Write a matrix $A$ so that $\operatorname{Col}(A)$ is the solid blue line and $\operatorname{Nul}(A)$ is the dotted red line drawn below.

supplemental (2.6-3.2)

1. Circle TRUE if the statement is always true, and circle FALSE otherwise.
a) If $A$ is a $3 \times 100$ matrix of rank 2 , then $\operatorname{dim}(\operatorname{Nul} A)=97$.

TRUE FALSE
b) If $A$ is an $m \times n$ matrix and $A x=0$ has only the trivial solution, then the columns of $A$ form a basis for $\mathbf{R}^{m}$.

TRUE FALSE
c) The set $V=\left\{\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)\right.$ in $\left.\mathbf{R}^{4} \mid x-4 z=0\right\}$ is a subspace of $\mathbf{R}^{4}$.

TRUE FALSE
2. Circle $\mathbf{T}$ if the statement is always true, and circle $\mathbf{F}$ otherwise. You do not need to explain your answer.
a) If $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis for a subspace $V$ of $\mathbf{R}^{n}$, then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a linearly independent set.
b) The solution set of a consistent matrix equation $A x=b$ is a subspace.
c) A translate of a span is a subspace.
3. True or false (justify your answer). Answer true if the statement is always true. Otherwise, answer false.
a) There exists a $3 \times 5$ matrix with rank 4 .
b) If $A$ is an $9 \times 4$ matrix with a pivot in each column, then

$$
\operatorname{Nul} A=\{0\} .
$$

c) There exists a $4 \times 7$ matrix $A$ such that nullity $A=5$.
d) If $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for $\mathbf{R}^{4}$, then $n=4$.
4. a) True or false: If $A$ is an $m \times n$ matrix and $\operatorname{Nul}(A)=\mathbf{R}^{n}$, then $\operatorname{Col}(A)=\{0\}$.
b) Give an example of $2 \times 2$ matrix whose column space is the same as its null space.
c) True or false: For some $m$, we can find an $m \times 10$ matrix $A$ whose column span has dimension 4 and whose solution set for $A x=0$ has dimension 5 .
5. Fill in the blanks: If $A$ is a $7 \times 6$ matrix and the solution set for $A x=0$ is a plane, then the column space of $A$ is a $\qquad$ -dimensional subspace of $\mathrm{R} \square$.
6. True or false. If the statement is always true, answer TRUE. Otherwise, circle FALSE.
a) The matrix transformation $T\binom{x}{y}=\left(\begin{array}{cc}-1 & 0 \\ 0 & 0\end{array}\right)\binom{x}{y}$ performs reflection across the $x$-axis in $\mathbf{R}^{2} . \quad$ TRUE FALSE
b) The matrix transformation $T\binom{x}{y}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\binom{x}{y}$ performs rotation counterclockwise by $90^{\circ}$ in $\mathbf{R}^{2}$. TRUE FALSE
7. Let $A$ be a $3 \times 4$ matrix with column vectors $v_{1}, v_{2}, v_{3}, v_{4}$, and suppose $v_{2}=2 v_{1}-3 v_{4}$. Consider the matrix transformation $T(x)=A x$.
a) Is it possible that $T$ is one-to-one? If yes, justify why. If no, find distinct vectors $v$ and $w$ so that $T(v)=T(w)$.
b) Is it possible that $T$ is onto? Justify your answer.
8. Answer each question.
a) Suppose $S: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ is the matrix transformation $S(x)=\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 3\end{array}\right) x$. Is $S$ one-to-one? YES NO

Is $S$ onto? $\quad$ YES NO
b) Suppose $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is given by $T(x, y)=(x-y, x-y)$.

Is $T$ one-to-one? YES NO
Is $T$ onto? $\quad$ YES NO
c) Suppose $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is a one-to-one matrix transformation. Which one of the following must be true? (cicle one)

$$
m=n \quad m<n \quad m \leq n \quad m>n \quad m \geq n
$$

9. Which of the following transformations are onto?

Circle all that apply.
a) $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ that rotates counterclockwise by $\frac{\pi}{12}$ radians.
b) The transformation $T(x)=A x$, where $A$ is a $4 \times 3$ matrix with three pivots.
c) $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects across the $y z$-plane.

1. If $A$ is a $3 \times 5$ matrix and $B$ is a $3 \times 2$ matrix, which of the following are defined?
a) $A-B$
b) $A B$
c) $A^{T} B$
d) $B^{T} A$
e) $A^{2}$
2. $A$ is $m \times n$ matrix, $B$ is $n \times m$ matrix. Select proper answers from the box. Multiple answers are possible
a) Take any vector $x$ in $\mathbf{R}^{m}$, then $A B x$ must be in:

$$
\operatorname{Col}(A), \quad \operatorname{Nul}(A), \quad \operatorname{Col}(B), \quad \operatorname{Nul}(B)
$$

b) Take any vector $x$ in $\mathbf{R}^{n}$, then $B A x$ must be in:

$$
\operatorname{Col}(A), \quad \operatorname{Nul}(A), \quad \operatorname{Col}(B), \quad \operatorname{Nul}(B)
$$

c) If $m>n$, then columns of $A B$ could be linearly independent, dependent
d) If $m>n$, then columns of $B A$ could be linearly independent, dependent
e) If $m>n$ and $A x=0$ has nontrivial solutions, then columns of $B A$ could be linearly independent, dependent

1. Circle $\mathbf{T}$ if the statement is always true, and circle $\mathbf{F}$ otherwise.
a) $\mathbf{T} \quad \mathbf{F} \quad$ If $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is linear and $T\left(e_{1}\right)=T\left(e_{2}\right)$, then the homogeneous equation $T(x)=0$ has infinitely many solutions.
b) $\quad \mathbf{T} \quad$ If $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is a one-to-one linear transformation and $m \neq n$, then $T$ must not be onto.
2. Consider $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ given by

$$
T(x, y, z)=(x, x+z, 3 x-4 y+z, x)
$$

Is $T$ one-to-one? Justify your answer.
3. In each case, determine whether $T$ is linear. Briefly justify.
a) $T\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}, x_{1}+x_{2}, 1\right)$.
b) $T(x, y)=\left(y, x^{1 / 3}\right)$.
c) $T(x, y, z)=2 x-5 z$.
4. True or false (justify your answer). Answer true if the statement is always true. Otherwise, answer false.
a) If $A$ and $B$ are matrices and the products $A B$ and $B A$ are both defined, then $A$ and $B$ must be square matrices with the same number of rows and columns.
b) If $A, B$, and $C$ are nonzero $2 \times 2$ matrices satisfying $B A=C A$, then $B=C$.
c) Suppose $A$ is an $4 \times 3$ matrix whose associated transformation $T(x)=A x$ is not one-to-one. Then there must be a $3 \times 3$ matrix $B$ which is not the zero matrix and satisfies $A B=0$.
d) Suppose $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and $U: \mathbf{R}^{m} \rightarrow \mathbf{R}^{p}$ are one-to-one linear transformations. Then $U \circ T$ is one-to-one. (What if $U$ and $T$ are not necessarily linear?)
5. In each case, use geometric intuition to either give an example of a matrix with the desired properties or explain why no such matrix exists.
a) A $3 \times 3$ matrix $P$, which is not the identity matrix or the zero matrix, and satisfies $P^{2}=P$.
b) A $2 \times 2$ matrix $A$ satisfying $A^{2}=I$.
c) A $2 \times 2$ matrix $A$ satisfying $A^{3}=-I$.

1. True or false (justify your answer). Answer true if the statement is always true. Otherwise, answer false.
a) If $A$ and $B$ are $n \times n$ matrices and both are invertible, then the inverse of $A B$ is $A^{-1} B^{-1}$.
b) If $A$ is an $n \times n$ matrix and the equation $A x=b$ has at least one solution for each $b$ in $\mathbf{R}^{n}$, then the solution is unique for each $b$ in $\mathbf{R}^{n}$.
c) If $A$ is an $n \times n$ matrix and the equation $A x=b$ has at most one solution for each $b$ in $\mathbf{R}^{n}$, then the solution must be unique for each $b$ in $\mathbf{R}^{n}$.
d) If $A$ and $B$ are invertible $n \times n$ matrices, then $A+B$ is invertible and $(A+B)^{-1}=$ $A^{-1}+B^{-1}$.
e) If $A$ and $B$ are $n \times n$ matrices and $A B x=0$ has a unique solution, then $A x=0$ has a unique solution.
f) If $A$ is a $3 \times 4$ matrix and $B$ is a $4 \times 2$ matrix, then the linear transformation $Z$ defined by $Z(x)=A B x$ has domain $\mathbf{R}^{3}$ and codomain $\mathbf{R}^{2}$.
g) Suppose $A$ is an $n \times n$ matrix and every vector in $\mathbf{R}^{n}$ can be written as a linear combination of the columns of $A$. Then $A$ must be invertible.
