Supplemental problems: §3.3

1. Circle \mathbf{T} if the statement is always true, and circle \mathbf{F} otherwise.
a) $\mathbf{T} \quad \mathbf{F} \quad$ If $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is linear and $T\left(e_{1}\right)=T\left(e_{2}\right)$, then the homogeneous equation $T(x)=0$ has infinitely many solutions.
b) $\mathbf{T} \quad \mathbf{F} \quad$ If $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is a one-to-one linear transformation and $m \neq n$, then T must not be onto.

Solution.

a) True. The matrix transformation $T(x)=A x$ is not one-to-one, so $A x=0$ has infinitely many solutions. For example, $e_{1}-e_{2}$ is a non-trivial solution to $A x=0$ since $A\left(e_{1}-e_{2}\right)=A e_{1}-A e_{2}=0$.
b) True. Let A be the $m \times n$ standard matrix for T. If T is both one-to-one and onto then T must have a pivot in each column and in each row, which is only possible when A is a square matrix $(m=n)$.
2. Consider $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{4}$ given by

$$
T(x, y, z)=(x, x+z, 3 x-4 y+z, x)
$$

Is T one-to-one? Justify your answer.

Solution.

One approach: We form the standard matrix A for T :

$$
A=\left(\begin{array}{ccc}
T\left(e_{1}\right) & T\left(e_{2}\right) & T\left(e_{3}\right)
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 1 \\
3 & -4 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

We row-reduce A until we determine its pivot columns

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 1 \\
3 & -4 & 1 \\
1 & 0 & 0
\end{array}\right) \xrightarrow[R_{3}=R_{3}-3 R_{1}, R_{4}=R_{4}-R_{1}]{R_{2}=R_{2}-R_{1}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -4 & 1 \\
0 & 0 & 0
\end{array}\right) \xrightarrow{R_{2} \leftrightarrow R_{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -4 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) .
$$

A has a pivot in every column, so T is one-to-one.
Alternative approach: T is a linear transformation, so it is one-to-one if and only if the equation $T(x, y, z)=(0,0,0)$ has only the trivial solution. If $T(x, y, z)=(x, x+z, 3 x-4 y+z, x)=(0,0,0,0)$ then $x=0$, and

$$
\begin{aligned}
& x+z=0 \Longrightarrow 0+z=0 \Longrightarrow z=0, \text { and finally } \\
& 3 x-4 y+z=0 \Longrightarrow 0-4 y+0=0 \Longrightarrow y=0
\end{aligned}
$$

so the trivial solution $x=y=z=0$ is the only solution the homogeneous equation. Therefore, T is one-to-one.
3. Which of the following transformations T are onto? Which are one-to-one? If the transformation is not onto, find a vector not in the range. If the matrix is not one-to-one, find two vectors with the same image.
a) The transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ defined by $T(x, y, z)=(y, y)$.
b) JUST FOR FUN: Consider T : (Smooth functions) \rightarrow (Smooth functions) given by $T(f)=f^{\prime}$ (the derivative of f). Then T is not a transformation from any \mathbf{R}^{n} to \mathbf{R}^{m}, but it is still linear in the sense that for all smooth f and g and all scalars c, we have the following (by properties of differentiation we learned in Calculus 1):

$$
\begin{gathered}
T(f+g)=T(f)+T(g) \text { since }(f+g)^{\prime}=f^{\prime}+g^{\prime} \\
T(c f)=c T(f) \text { since }(c f)^{\prime}=c f^{\prime}
\end{gathered}
$$

Is T one-to-one?

Solution.

a) This is not onto. Everything in the range of T has its first coordinate equal to its second, so there is no (x, y, z) such that $T(x, y, z)=(1,0)$. It is not one-to-one: for instance, $T(0,0,0)=(0,0)=T(0,0,1)$.
b) T is not one-to-one. If T were one-to-one, then for any smooth function b, the equation $T(f)=b$ would have at most one solution. However, note that if f and g are the functions $f(t)=t$ and $g(t)=t-1$, then f and g are different functions but their derivatives are the same, so $T(f)=T(g)$. Therefore, T is not one-to-one. It is not within the scope of Math 1553. If you find it confusing, feel free to ignore it.
4. In each case, determine whether T is linear. Briefly justify.
a) $T\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}, x_{1}+x_{2}, 1\right)$.
b) $T(x, y)=\left(y, x^{1 / 3}\right)$.
c) $T(x, y, z)=2 x-5 z$.

Solution.

a) Not linear. $T(0,0)=(0,0,1) \neq(0,0,0)$.
b) Not linear. The $x^{1 / 3}$ term gives it away. $T(0,2)=\left(0,2^{1 / 3}\right)$ but $2 T(0,1)=$ $(0,2)$.
c) Linear. In fact, $T(v)=A v$ where

$$
A=\left(\begin{array}{lll}
2 & 0 & -5
\end{array}\right)
$$

5. The second little pig has decided to build his house out of sticks. His house is shaped like a pyramid with a triangular base that has vertices at the points $(0,0,0),(2,0,0)$, $(0,2,0)$, and $(1,1,1)$.

The big bad wolf finds the pig's house and blows it down so that the house is rotated by an angle of 45° in a counterclockwise direction about the z-axis (look downward onto the $x y$-plane the way we usually picture the plane as \mathbf{R}^{2}), and then projected onto the $x y$-plane.

In the worksheet, we found the matrix for the transformation T caused by the wolf. Geometrically describe the image of the house under T.

Solution.

Work shows that $T(x)=A x$, where

$$
A=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
T\left(e_{1}\right) & T\left(e_{2}\right) & T\left(e_{3}\right) \\
\mid & \mid & \mid
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

We know the house has been effectively destroyed, but what do its remains look like? To get an idea, let's look at what happens to the vertices.

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), \quad \frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
\sqrt{2} \\
\sqrt{2} \\
0
\end{array}\right) \\
& \frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
2 \\
0
\end{array}\right)=\left(\begin{array}{c}
-\sqrt{2} \\
\sqrt{2} \\
0
\end{array}\right) \quad \frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
\sqrt{2} \\
0
\end{array}\right) .
\end{aligned}
$$

This indicates the pyramid has been squashed into a triangle in the $x y$-plane with vertices $\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}\sqrt{2} \\ \sqrt{2} \\ 0\end{array}\right),\left(\begin{array}{c}-\sqrt{2} \\ \sqrt{2} \\ 0\end{array}\right)$. (the point $\left(\begin{array}{c}0 \\ \sqrt{2} \\ 0\end{array}\right)$ is along the top side of this triangle).

Effectively, the pyramid was rotated and then destroyed, so that its (rotated) base is all that remains.

Supplemental problems: §3.4

1. Consider $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ defined by

$$
T\binom{x}{y}=\left(\begin{array}{c}
x+2 y \\
2 x+y \\
x-y
\end{array}\right)
$$

and $U: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ defined by first projecting onto the $x y$-plane (forgetting the z coordinate), then rotating counterclockwise by 90°.
a) Compute the standard matrices A and B for T and U, respectively.
b) Compute the standard matrices for $T \circ U$ and $U \circ T$.
c) Circle all that apply:

| $T \circ U$ is: one-to-one | onto |
| :--- | :--- | :--- |
| $U \circ T$ is: | one-to-one onto |

Solution.

a) We plug in the unit coordinate vectors to get

$$
A=\left(\begin{array}{cc}
\mid & \mid \\
T\left(e_{1}\right) & T\left(e_{2}\right) \\
\mid & \mid
\end{array}\right)=\left(\begin{array}{cc}
1 & 2 \\
2 & 1 \\
1 & -1
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
U\left(e_{1}\right) & U\left(e_{2}\right) & U\left(e_{3}\right) \\
\mid & \mid & \mid
\end{array}\right)=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right) .
$$

b) The standard matrix for $T \circ U$ is

$$
A B=\left(\begin{array}{cc}
1 & 2 \\
2 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
2 & -1 & 0 \\
1 & -2 & 0 \\
-1 & -1 & 0
\end{array}\right)
$$

The standard matrix for $U \circ T$ is

$$
B A=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
2 & 1 \\
1 & -1
\end{array}\right)=\left(\begin{array}{cc}
-2 & -1 \\
1 & 2
\end{array}\right) .
$$

c) Looking at the matrices, we see that $T \circ U$ is not one-to-one or onto, and that $U \circ T$ is one-to-one and onto.
2. Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ be the linear transformation which projects onto the $y z$-plane and then forgets the x-coordinate, and let $U: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the linear transformation of rotation counterclockwise by 60°. Their standard matrices are

$$
A=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad B=\frac{1}{2}\left(\begin{array}{cc}
1 & -\sqrt{3} \\
\sqrt{3} & 1
\end{array}\right)
$$

respectively.
a) Which composition makes sense? (Circle one.)

$$
U \circ T \quad T \circ U
$$

b) Find the standard matrix for the transformation that you circled in (b).

Solution.

a) Only $U \circ T$ makes sense, as the codomain of T is \mathbf{R}^{2}, which is the domain of U.
b) The standard matrix for $U \circ T$ is

$$
B A=\frac{1}{2}\left(\begin{array}{cc}
1 & -\sqrt{3} \\
\sqrt{3} & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ccc}
0 & 1 & -\sqrt{3} \\
0 & \sqrt{3} & 1
\end{array}\right) .
$$

3. Find all matrices B that satisfy

$$
\left(\begin{array}{cc}
1 & -3 \\
-3 & 5
\end{array}\right) B=\left(\begin{array}{cc}
-3 & -11 \\
1 & 17
\end{array}\right)
$$

Solution.

B must have two rows and two columns for the above to compute, so $B=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. We calculate

$$
\left(\begin{array}{cc}
1 & -3 \\
-3 & 5
\end{array}\right) B=\left(\begin{array}{cc}
a-3 c & b-3 d \\
-3 a+5 c & -3 b+5 d
\end{array}\right)
$$

Setting this equal to $\left(\begin{array}{cc}-3 & -11 \\ 1 & 17\end{array}\right)$ gives us

$$
\left.\begin{array}{r}
a-3 c=-3 \\
-3 a+5 c=1
\end{array}\right\} \quad \text { solve } \quad a=3, c=2
$$

and

$$
\left.\begin{array}{rr}
b-3 d= & -11 \\
-3 b+5 d & =17
\end{array}\right\} \quad \text { solve } \quad b=1, d=4 .
$$

Therefore, $B=\left(\begin{array}{ll}3 & 1 \\ 2 & 4\end{array}\right)$.
4. Let T and U be the (linear) transformations below:
$T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{3}-x_{1}, x_{2}+4 x_{3}, x_{1}, 2 x_{2}+x_{3}\right) \quad U\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}-2 x_{2}, x_{1}\right)$.
a) Which compositions makes sense (circle all that apply)? $U \circ T \quad T \circ U$
b) Compute the standard matrix for T and for U.
c) Compute the standard matrix for each composition that you circled in (a).

Solution.

a) $U \circ T$ makes sense, but $T \circ U$ does not.
b) Let A be the standard matrix for T and B be the standard matrix for U.

$$
A=\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 1 & 4 \\
1 & 0 & 0 \\
0 & 2 & 1
\end{array}\right) \quad B=\left(\begin{array}{cccc}
1 & -2 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

c) The matrix for $U \circ T$ is

$$
B A=\left(\begin{array}{cccc}
1 & -2 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 1 & 4 \\
1 & 0 & 0 \\
0 & 2 & 1
\end{array}\right)=\left(\begin{array}{ccc}
-1 & -2 & -7 \\
-1 & 0 & 1
\end{array}\right)
$$

5. True or false (justify your answer). Answer true if the statement is always true. Otherwise, answer false.
a) If A and B are matrices and the products $A B$ and $B A$ are both defined, then A and B must be square matrices with the same number of rows and columns.
b) If A, B, and C are nonzero 2×2 matrices satisfying $B A=C A$, then $B=C$.
c) Suppose A is an 4×3 matrix whose associated transformation $T(x)=A x$ is not one-to-one. Then there must be a 3×3 matrix B which is not the zero matrix and satisfies $A B=0$.
d) Suppose $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and $U: \mathbf{R}^{m} \rightarrow \mathbf{R}^{p}$ are one-to-one linear transformations. Then $U \circ T$ is one-to-one. (What if U and T are not necessarily linear?)

Solution.

a) False. For example, if A is any 2×3 matrix and B is any 3×2 matrix, then $A B$ and $B A$ are both defined.
b) False. Take $A=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right), B=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$, and $C=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Then $B A=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ and $B C=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$, but $B \neq C$.
c) True. If T is not one-to-one then there is a non-zero vector v in \mathbf{R}^{3} so that

$$
A v=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

The 3×3 matrix $B=\left(\begin{array}{ccc}\mid & \mid & \mid \\ v & v & v \\ \mid & \mid & \mid\end{array}\right)$ satisfies

$$
A B=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
A v & A v & A v \\
\mid & \mid & \mid
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

d) True. Recall that a transformation S is one-to-one if $S(x)=S(y)$ implies $x=y$ (the same outputs implies the same inputs). Suppose that $U \circ T(x)=U \circ T(y)$. Then $U(T(x))=U(T(y))$, so since U is one-to-one, we have $T(x)=T(y)$. Since T is one-to-one, this implies $x=y$. Therefore, $U \circ T$ is one-to-one.

Note that this argument does not use the assumption that U and T are linear transformations.

Alternative: We'll show that $U \circ T(x)=0$ has only the trivial solution. Let A be the matrix for U and B be the matrix for T, and suppose x is a vector satisfying $(U \circ T)(x)=0$. In terms of matrix multiplication, this is equivalent to $A B x=0$. Since U is one-to-one, the only solution to $A v=0$ is $v=0$, so $A(B x)=0 \Longrightarrow B x=0$.

Since T is one-to-one, we know that $B x=0 \Longrightarrow x=0$. Therefore, the equation $(U \circ T)(x)=0$ has only the trivial solution.
6. In each case, use geometric intuition to either give an example of a matrix with the desired properties or explain why no such matrix exists.
a) A 3×3 matrix P, which is not the identity matrix or the zero matrix, and satisfies $P^{2}=P$.
b) A 2×2 matrix A satisfying $A^{2}=I$.
c) A 2×2 matrix A satisfying $A^{3}=-I$.

Solution.

a) Take P to be the natural projection onto the $x y$-plane in \mathbf{R}^{3}, so $P=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$. If you apply P to a vector then the result will be within the $x y$-plane of \mathbf{R}^{3}, so applying P a second time won't change anything, hence $P^{2}=P$.
b) Take A to be matrix for reflection across the line $y=x$, so $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Since A swaps the x and y coordinates, repeating A will swap them back to their original positions, so $A A=I$.
c) Note that $-I$ is the matrix that rotates counterclockwise by 180°, so we need a transformation that will give you counterclockwise rotation by 180° if you do it three times. One such matrix is the rotation matrix for 60° counterclockwise,

$$
A=\left(\begin{array}{cc}
\cos (\pi / 3) & -\sin (\pi / 3) \\
\sin (\pi / 3) & \cos (\pi / 3)
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
1 & -\sqrt{3} \\
\sqrt{3} & 1
\end{array}\right)
$$

Another such matrix is $A=-I$.

