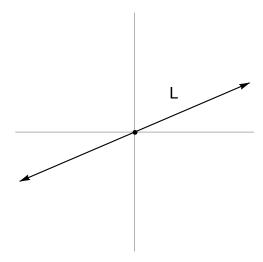
Supplemental problems: §5.1

- 1. True or false. Answer true if the statement is always true. Otherwise, answer false.
 - a) If A and B are $n \times n$ matrices and A is row equivalent to B, then A and B have the same eigenvalues.
 - **b)** If *A* is an $n \times n$ matrix and its eigenvectors form a basis for \mathbb{R}^n , then *A* is invertible.
 - **c)** If 0 is an eigenvalue of the $n \times n$ matrix A, then rank(A) < n.
 - **d)** The diagonal entries of an $n \times n$ matrix A are its eigenvalues.
 - e) If *A* is invertible and 2 is an eigenvalue of *A*, then $\frac{1}{2}$ is an eigenvalue of A^{-1} .
 - f) If det(A) = 0, then 0 is an eigenvalue of A.
 - g) If v and w are eigenvectors of a square matrix A, then so is v + w.
- **2.** Find a basis \mathcal{B} for the (-1)-eigenspace of $Z = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 2 & 4 \\ 0 & 0 & -1 \end{pmatrix}$
- **3.** Suppose *A* is an $n \times n$ matrix satisfying $A^2 = 0$. Find all eigenvalues of *A*. Justify your answer.
- **4.** Match the statements (i)-(v) with the corresponding statements (a)-(e). All matrices are 3×3 . There is a unique correspondence. Justify the correspondences in words.
 - (i) $Ax = \begin{pmatrix} 5 \\ 1 \\ 2 \end{pmatrix}$ has a unique solution.
 - (ii) The transformation T(v) = Av fixes a nonzero vector.
 - (iii) *A* is obtained from *B* by subtracting the third row of *B* from the first row of *B*.
 - (iv) The columns of *A* and *B* are the same; except that the first, second and third columns of A are respectively the first, third, and second columns of *B*.

1

- (v) The columns of A, when added, give the zero vector.
- (a) 0 is an eigenvalue of A.
- (b) *A* is invertible.
- (c) det(A) = det(B)
- (d) det(A) = -det(B)
- (e) 1 is an eigenvalue of A.

5. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation which reflects across the line L drawn below, and let A be the standard matrix for T.



- **a)** Write all eigenvalues of *A*.
- **b)** For each eigenvalue of *A*, draw one eigenvector on the graph above. Your eigenvector does not need to be perfect, but it should be reasonably accurate.