Supplemental problems: §5.5

1. a) If A is the matrix that implements rotation by 143° in \mathbf{R}^{2}, then A has no real eigenvalues.
b) A 3×3 matrix can have eigenvalues 3,5 , and $2+i$.
c) If $v=\binom{2+i}{1}$ is an eigenvector of A corresponding to the eigenvalue $\lambda=1-i$, then $w=\binom{2 i-1}{i}$ is an eigenvector of A corresponding to the eigenvalue $\lambda=1-i$.

Solution.

a) True. If A had a real eigenvalue λ, then we would have $A x=\lambda x$ for some nonzero vector x in \mathbf{R}^{2}. This means that x would lie on the same line through the origin as the rotation of x by 143°, which is impossible.
b) False. If $2+i$ is an eigenvalue then so is its conjugate $2-i$.
c) True. Any nonzero complex multiple of v is also an eigenvector for eigenvalue $1-i$, and $w=i v$.
2. Consider the matrix

$$
A=\left(\begin{array}{cc}
3 \sqrt{3}-1 & -5 \sqrt{3} \\
2 \sqrt{3} & -3 \sqrt{3}-1
\end{array}\right)
$$

a) Find both complex eigenvalues of A.
b) Find an eigenvector corresponding to each eigenvalue.

Solution.

a) We compute the characteristic polynomial:

$$
\begin{aligned}
f(\lambda) & =\operatorname{det}\left(\begin{array}{cc}
3 \sqrt{3}-1-\lambda & -5 \sqrt{3} \\
2 \sqrt{3} & -3 \sqrt{3}-1-\lambda
\end{array}\right) \\
& =(-1-\lambda+3 \sqrt{3})(-1-\lambda-3 \sqrt{3})+(2)(5)(3) \\
& =(-1-\lambda)^{2}-9(3)+10(3) \\
& =\lambda^{2}+2 \lambda+4 .
\end{aligned}
$$

By the quadratic formula,

$$
\lambda=\frac{-2 \pm \sqrt{2^{2}-4(4)}}{2}=\frac{-2 \pm 2 \sqrt{3} i}{2}=-1 \pm \sqrt{3} i
$$

b) Let $\lambda=-1-\sqrt{3} i$. Then

$$
A-\lambda I=\left(\begin{array}{cc}
(i+3) \sqrt{3} & -5 \sqrt{3} \\
2 \sqrt{3} & (i-3) \sqrt{3}
\end{array}\right)
$$

Since $\operatorname{det}(A-\lambda I)=0$, the second row is a multiple of the first, so a row echelon form of A is

$$
\left(\begin{array}{cc}
i+3 & -5 \\
0 & 0
\end{array}\right)
$$

Hence an eigenvector with eigenvalue $-1-\sqrt{3} i$ is $v=\binom{5}{3+i}$. It follows that an eigenvector with eigenvalue $-1+\sqrt{3} i$ is $\bar{v}=\binom{5}{3-i}$.
3. Let $A=\left(\begin{array}{rrr}4 & -3 & 3 \\ 3 & 4 & -2 \\ 0 & 0 & 2\end{array}\right)$. Find all eigenvalues of A. For each eigenvalue of A, find a corresponding eigenvector.

Solution.

First we compute the characteristic polynomial by expanding cofactors along the third row:

$$
\begin{aligned}
f(\lambda) & =\operatorname{det}\left(\begin{array}{ccc}
4-\lambda & -3 & 3 \\
3 & 4-\lambda & -2 \\
0 & 0 & 2-\lambda
\end{array}\right)=(2-\lambda) \operatorname{det}\left(\begin{array}{cc}
4-\lambda & -3 \\
3 & 4-\lambda
\end{array}\right) \\
& =(2-\lambda)\left((4-\lambda)^{2}+9\right)=(2-\lambda)\left(\lambda^{2}-8 \lambda+25\right)
\end{aligned}
$$

Using the quadratic equation on the second factor, we find the eigenvalues

$$
\lambda_{1}=2 \quad \lambda_{2}=4-3 i \quad \bar{\lambda}_{2}=4+3 i
$$

Next compute an eigenvector with eigenvalue $\lambda_{1}=2$:

$$
A-2 I=\left(\begin{array}{ccc}
2 & -3 & 3 \\
3 & 2 & -2 \\
0 & 0 & 0
\end{array}\right) \xrightarrow{\text { RREF }}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)
$$

The parametric form is $x=0, y=z$, so the parametric vector form of the solution is

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=z\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \text { eigenvector } \quad \underset{m m u m u r}{ } v_{1}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) .
$$

Now we compute an eigenvector with eigenvalue $\lambda_{2}=4-3 i$:

$$
\begin{aligned}
A=(4-3 i) I= & \left(\begin{array}{ccc}
3 i & -3 & 3 \\
3 & 3 i & -2 \\
0 & 0 & 3 i-2
\end{array}\right) \xrightarrow{R_{1} \longleftrightarrow R_{2}}\left(\begin{array}{ccc}
3 & 3 i & -2 \\
3 i & -3 & 3 \\
0 & 0 & 3 i-2
\end{array}\right) \\
& \xrightarrow{R_{2}=R_{2}-i R_{1}}\left(\begin{array}{ccc}
3 & 3 i & -2 \\
0 & 0 & 3+2 i \\
0 & 0 & 3 i-2
\end{array}\right) \xrightarrow{R_{2}=R_{2} \div(3+2 i)}\left(\begin{array}{ccc}
3 & 3 i & -2 \\
0 & 0 & 1 \\
0 & 0 & 3 i-2
\end{array}\right) \\
& \xrightarrow{\text { row replacements }}\left(\begin{array}{ccc}
3 & 3 i & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \xrightarrow{R_{1}=R_{1} \div 3}\left(\begin{array}{ccc}
1 & i & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

The parametric form of the solution is $x=-i y, z=0$, so the parametric vector form is

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=y\left(\begin{array}{c}
-i \\
1 \\
0
\end{array}\right) \stackrel{\text { eigenvector }}{\text { mmumur }} v_{2}=\left(\begin{array}{c}
-i \\
1 \\
0
\end{array}\right) .
$$

An eigenvector for the complex conjugate eigenvalue $\bar{\lambda}_{2}=4+3 i$ is the complex conjugate eigenvector $\bar{v}_{2}=\left(\begin{array}{l}i \\ 1 \\ 0\end{array}\right)$.

Supplemental problems: §5.6

1. Suppose the internet has four pages in the following manner. Arrows represent links from one page towards another. For example, page 1 links to page 4 but not vice versa.

a) Write the importance matrix and the Google matrix for this internet using damping constant $p=0.15$. You don't need to simplify the Google matrix.
b) The steady-state vector for the Google matrix is (approximately)

$$
\left(\begin{array}{l}
0.23 \\
0.23 \\
0.23 \\
0.31
\end{array}\right)
$$

What is the top-ranked page?

Solution.

(a) The importance matrix is

$$
A=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 1 & 0 & 0
\end{array}\right)
$$

The Google matrix is

$$
0.85\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 1 & 0 & 0
\end{array}\right)+(0.15) \frac{1}{4}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right) .
$$

(b) From the steady-state vector we see page 4 has the highest rank.
2. The companies X, Y, and Z fight for customers. This year, company X has 40 customers, Company Y has 15 customers, and Z has 20 customers. Each year, the following changes occur:

- X keeps 75% of its customers, while losing 15% to Y and 10% to Z .
- Y keeps 60% of its customers, while losing 5% to X and 35% to Z .
- Z keeps 65% of its customers, while losing 15% to X and 20% to Y .

Write a stochastic matrix A and a vector x so that $A x$ will give the number of customers for firms X, Y, and Z (respectively) after one year. You do not need to compute $A x$.

Solution.

$$
A=\left(\begin{array}{ccc}
0.75 & 0.05 & 0.15 \\
0.15 & 0.6 & 0.20 \\
0.1 & 0.35 & 0.65
\end{array}\right) \quad x=\left(\begin{array}{c}
40 \\
15 \\
20
\end{array}\right)
$$

3. Courage Soda and Dexter Soda compete for a market of 210 customers who drink soda each day.
Today, Courage has 80 customers and Dexter has 130 customers. Each day:
70% of Courage Soda's customers keep drinking Courage Soda, while 30% switch to Dexter Soda.
40% of Dexter Soda's customers keep drinking Dexter Soda, while 60% switch to Courage Soda.
a) Write a stochastic matrix A and a vector x so that $A x$ will give the number of customers for Courage Soda and Dexter Soda (in that order) tomorrow.
You do not need to compute $A x$.

$$
A=\left(\begin{array}{ll}
0.7 & 0.6 \\
0.3 & 0.4
\end{array}\right) \text { and } x=\binom{80}{130} .
$$

b) Find the steady-state vector for A.

$$
(A-I \mid 0)=\left(\begin{array}{rr|r}
-0.3 & 0.6 & 0 \\
0.3 & -0.6 & 0
\end{array}\right) \xrightarrow[R_{1}=R_{1} /(-0.3)]{R_{2}=R_{2}+R_{1}}\left(\begin{array}{rr|r}
1 & -2 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

so $x_{1}=2 x_{2}$ and x_{2} is free. A 1-eigenvector is $\binom{2}{1}$, so the steady state vector is $w=\frac{1}{2+1}\binom{2}{1}=\binom{2 / 3}{1 / 3}$.
c) Use your answer from (b) to determine the following: in the long run, roughly how many daily customers will Courage Soda have?

As n gets large, $A^{n}\binom{80}{130}$ approaches $210\binom{2 / 3}{1 / 3}=\binom{140}{70}$. Courage will have roughly 140 customers.

