Supplemental problems: §5.5

1. a) If A is the matrix that implements rotation by 143° in \mathbf{R}^{2}, then A has no real eigenvalues.
b) A 3×3 matrix can have eigenvalues 3,5 , and $2+i$.
c) If $v=\binom{2+i}{1}$ is an eigenvector of A corresponding to the eigenvalue $\lambda=1-i$, then $w=\binom{2 i-1}{i}$ is an eigenvector of A corresponding to the eigenvalue $\lambda=1-i$.
2. Consider the matrix

$$
A=\left(\begin{array}{cc}
3 \sqrt{3}-1 & -5 \sqrt{3} \\
2 \sqrt{3} & -3 \sqrt{3}-1
\end{array}\right)
$$

a) Find both complex eigenvalues of A.
b) Find an eigenvector corresponding to each eigenvalue.
3. Let $A=\left(\begin{array}{rrr}4 & -3 & 3 \\ 3 & 4 & -2 \\ 0 & 0 & 2\end{array}\right)$. Find all eigenvalues of A. For each eigenvalue of A, find a corresponding eigenvector.

Supplemental problems: §5.6

1. Suppose the internet has four pages in the following manner. Arrows represent links from one page towards another. For example, page 1 links to page 4 but not vice versa.

a) Write the importance matrix and the Google matrix for this internet using damping constant $p=0.15$. You don't need to simplify the Google matrix.
b) The steady-state vector for the Google matrix is (approximately)

$$
\left(\begin{array}{l}
0.23 \\
0.23 \\
0.23 \\
0.31
\end{array}\right)
$$

What is the top-ranked page?
2. The companies X, Y, and Z fight for customers. This year, company X has 40 customers, Company Y has 15 customers, and Z has 20 customers. Each year, the following changes occur:

- X keeps 75% of its customers, while losing 15% to Y and 10% to Z .
- Y keeps 60% of its customers, while losing 5% to X and 35% to Z .
- Z keeps 65% of its customers, while losing 15% to X and 20% to Y .

Write a stochastic matrix A and a vector x so that $A x$ will give the number of customers for firms X, Y, and Z (respectively) after one year. You do not need to compute $A x$.
3. Courage Soda and Dexter Soda compete for a market of 210 customers who drink soda each day.
Today, Courage has 80 customers and Dexter has 130 customers. Each day:
70% of Courage Soda's customers keep drinking Courage Soda, while 30\% switch to Dexter Soda.

40\% of Dexter Soda's customers keep drinking Dexter Soda, while 60\% switch to Courage Soda.
a) Write a stochastic matrix A and a vector x so that $A x$ will give the number of customers for Courage Soda and Dexter Soda (in that order) tomorrow. You do not need to compute $A x$.
b) Find the steady-state vector for A.
c) Use your answer from (b) to determine the following: in the long run, roughly how many daily customers will Courage Soda have?

