Math 1553 midterm exam 3 Solutions

- **1.** Honor code
- **2.** The vector from (1,0) to (4,5) is (3,5) and the vector from (1,0) to (1,-4) is (0,-4). So the area of the triangle is

$$\frac{1}{2} \left| \det \begin{pmatrix} 3 & 0\\ 5 & -4 \end{pmatrix} \right| = \frac{1}{2} (12) = 6.$$

- **3.** The columns of the matrix are linearly dependent (in fact, the first three columns are identical!), so its determinant is 0.
- **4.** We solve

$$\det \begin{pmatrix} 1 & 0 & 4 \\ 0 & c & -5 \\ 1 & 3 & 7 \end{pmatrix} = 3$$

$$7c + 15 - 4c = 3$$
, $3c = -12$, $c = -4$.

5. Taken from a worksheet. If *A* is $n \times n$ then det(*cA*) = c^n det(*A*). Here *A* is 3×3 , so

$$det(2A) = 2^{3} det(A) = 8 det(A).$$

- **6.** We are told that *A* is 5×5 and det(*A*) = 3.
 - **a)** True. The columns of *A* form a basis for \mathbf{R}^n , since *A* is invertible.
 - **b)** True. The columns of *A* are linearly independent since *A* is invertible.
 - c) False. The rank of *A* is 5 since *A* is invertible.
 - **d)** True. The null space of *A* is just the zero vector, since Ax = 0 has only the trivial solution.
- **7.** Copied from a worksheet.
 - **a)** The correct answer is (III). This was copied from one of our chapter 5 work-sheets.
 - **b)** The correct answer is (III). This was copied from one of our chapter 5 work-sheets.
- 8. a) Since A has $\lambda = -1$ as an eigenvalue, the equation (A + I)x = 0 has infinitely many solutions since Ax = -x has a non-trivial solution.

b) det $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = 3$, and to get the matrix below requires a row swap and multiplying a row by -2, so

$$\det\begin{pmatrix} -2c & -2d\\ a & b \end{pmatrix} = 3(-1)(-2) = 6.$$

9. $A = \begin{pmatrix} 7 & 4 & 4 \\ 4 & 7 & 4 \\ 0 & 0 & 4 \end{pmatrix}$ so

$$(A-3I|0) = \begin{pmatrix} 4 & 4 & 4 & | & 0 \\ 4 & 4 & 4 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}.$$

This gives $x_1 + x_2 = 0$, x_2 free, and $x_3 = 0$, so a basis for the 3-eigenspace is $\begin{cases} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \end{cases}$.

- **10.** a) True. The matrix *A* gives counterclockwise rotation by 23°, which means that if $v \neq 0$, then *v* and *Av* will not be on the same line through the origin. Therefore, *A* doesn't have any real eigenvalues.
 - **b)** True: *u* and *v* are eigenvectors for $\lambda = 2$ and u + v is not the zero vector, so u + v is also a 2-eigenvector. You can see this by recalling that the 2-eigenspace is a subspace (thus closed under addition), or note

$$A(u + v) = Au + Av = 2u + 2v = 2(u + v).$$

11. Taken from the Webwork and a quiz. $A = \begin{pmatrix} 1 & k \\ 1 & 3 \end{pmatrix}$, so its char. polynomial is

$$\lambda^2 - \operatorname{Tr}(A)\lambda + \det(A) = \lambda^2 - 4\lambda + 3 - k.$$

This has one real eigenvalue of algebraic multiplicity 2 precisely when the polyomial is a square, so it equals

$$(\lambda-2)^2 = \lambda^2 - 4\lambda + 4,$$

thus 3 - k = 4 so k = -1.

12. We expand the characteristic polynomial along the third row: $A = \begin{pmatrix} 1 & 4 & -1 \\ 2 & 3 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ so

$$det(A - \lambda I) = det \begin{pmatrix} 1 - \lambda & 4 & -1 \\ 2 & 3 - \lambda & 1 \\ 0 & 0 & 1 - \lambda \end{pmatrix} = (-1)^6 (1 - \lambda) [(1 - \lambda)(3 - \lambda) - 8]$$
$$= (1 - \lambda)(\lambda^2 - 4\lambda - 5) = (1 - \lambda)(\lambda - 5)(\lambda + 1).$$

The eigenvalues are $\lambda = -1$, $\lambda = 1$, $\lambda = 5$.

- **13.** a) True. det $(A \lambda I) = -\lambda^3 4\lambda^2 = -\lambda^2(\lambda + 4)$, so if the 0-eigenspace is a plane then the matrix is automatically diagonalizable because the sum of geometric multiplicities of $\lambda = 0$ and $\lambda = -4$ is then automatically 2 + 1 = 3.
 - **b)** Need more information. We know *A* is 6×6 with exactly 4 real eigenvalues, but we are only told that (at least) one of the eigenvalues has geometric multiplicity 2, so this means the sum of geometric multiplicities is 5 or 6. If another eigenvalue has geo. mult. 2, then *A* is diagonalizable. However, if the rest each only have geo. mult. 1, then *A* is not diagonalizable.
- **14.** a) True. Copied from a worksheet.
 - b) True:

$$\det(A) = \det(CDC^{-1}) = \det(C)\det(D)\det(C^{-1}) = \det(C)\cdot\det(D)\cdot\frac{1}{\det(C)} = \det(D)$$

- **15.** a) $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ is not diagonalizable. Its only eigenvalue is $\lambda = 1$, but Nul(A - I) gives only two free variables, so the 1-eigenspace only has dimension 2.
 - **b)** Yes, *B* is a 2 × 2 matrix with two real eigenvalues $\lambda = 1$ and $\lambda = -1$, so *B* is diagonalizable.

16. Since
$$\begin{pmatrix} 4\\1 \end{pmatrix}$$
 is in the 1-eigenspace and $\begin{pmatrix} 3\\2 \end{pmatrix}$ is in the 2-eigenspace, we get $A\left(\begin{pmatrix} 4\\1 \end{pmatrix} + \begin{pmatrix} 3\\2 \end{pmatrix}\right) = A\begin{pmatrix} 4\\1 \end{pmatrix} + A\begin{pmatrix} 3\\2 \end{pmatrix} = \begin{pmatrix} 4\\1 \end{pmatrix} + 2\begin{pmatrix} 3\\2 \end{pmatrix} = \begin{pmatrix} 10\\5 \end{pmatrix}$.
So $k = 5$

- **17.** We are told the 2 × 2 matrix *A* has eigenvalue $\lambda_1 = -2 + i\sqrt{5}$ and corresponding eigenvector $\begin{pmatrix} 10 \\ -5 i\sqrt{5} \end{pmatrix}$.
 - a) Complex eigenvalues come in complex conjugate pairs, so $\lambda_2 = -2 i\sqrt{5}$ is its other eigenvalue.
 - **b)** We get an eigenvector for $\lambda = 2$ by taking the complex conjugate of each entry of the eigenvector for λ_1 , which gives us $\begin{pmatrix} 10\\ -5+i\sqrt{5} \end{pmatrix}$.

18. The positive 2 × 2 stochastic matrix *A* has 1-eigenspace spanned by $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$, so its steady-state vector is

$$w = \frac{1}{1+2} \binom{1}{2} = \binom{1/3}{2/3}.$$

Here $v = \begin{pmatrix} 120 \\ 30 \end{pmatrix}$. By the Perron-Frobenius Theorem, we know that as *n* gets very large, $A^n v$ approaches

$$(120+30)w = 150 \binom{1/3}{2/3} = \binom{50}{100}.$$

- **19.** *A* is a positive stochastic 3×3 matrix.
 - **a)** True, there is exactly one steady-state vector for *A* by the Perron-Frobenius Theorem.
 - **b)** True. Each column sums to 1, and there are three columns, so the sum of all entries in the matrix is 3.
- **20.** a) True. If *A* is 7 × 7 then it must have at least one real eigenvalue. Since (non-real) complex eigenvalues (and their powers) come in conjugate pairs, only an "even" × "even" matrix *A* can have no real eigenvalues.

Alternatively: since det($A - \lambda I$) is a degree 7 polynomial, it has at least one real root just due to a precalculus argument using end-behavior and continuity of polynomial functions.

b) True. If $Av = \lambda v$ then we know

$$A^2 v = A(\lambda v) = \lambda A v = \lambda^2 v$$

This means λ^2 and ν is a pair of eigenvalue and eigenvector for A^2 .

21. This problem is a simplified version of a problem from the supplemental problems in 5.1-5.2.

 $A = \begin{pmatrix} 3 & c \\ 2 & 1 \end{pmatrix}$ and we need $\lambda = 2$ to be an eigenvalue. This is the same as A - 2I is not invertible. We row-reduce

 $(A-2I|0) = \begin{pmatrix} 1 & c & 0 \\ 2 & -1 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & c & 0 \\ 0 & -1-2c & 0 \end{pmatrix}$

Since A - 2I is not invertible, we have -1 - 2c = 0, so c = -1/2. Alternatively, we could have solved for det(A - 2I) = 0 and found c = -1/2.