Math 1553 midterm exam 1

Solutions

1. Solution.

a) $\left(\begin{array}{lll|l}1 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$ is not in RREF, since 2 is above the pivot which is not zero.
b) $\left(\begin{array}{cccc|c}1 & 0 & 0 & 5 & -7 \\ 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$. There are two pivots, and there are two free variables

2. Solution.

a) If an augmented matrix has a pivot in every column, then the pivot in the last column (on the right of the vertical bar) has a pivot. That implies the linear system is inconsistent.
b) The two lines in $\mathbf{R}^{2}: x-y=c$ and $2 x-y=12$ have different slopes. So they will intersect no matter what the intercept c is.
From linear system point of view, we need to have a consistent linear system to have the two lines intersect. One can write down augmented matrix, $\left(\begin{array}{cc|c}1 & -1 & c \\ 2 & -1 & 12\end{array}\right)$, and do row reduction find REF to be $\left(\begin{array}{cc|c}1 & -1 & c \\ 0 & 1 & 12-2 c\end{array}\right)$ which is consistent for any c. Here is an online graph you can play with https://www.geogebra.org/graphing/qapz8jts

3. Solution.

a) The last row of $\left(\begin{array}{ccc|c}1 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2\end{array}\right)$ is $\left(\begin{array}{ccc|c}0 & 0 & 0 \mid 2\end{array}\right)$, which yields a contradiction.
b) $\left(\begin{array}{ccc|c}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0\end{array}\right)$ is consistent and have no free variables. So the linear system has a unique solution $x_{1}=0, x_{2}=0, x_{3}=-2$.

4. Solution.

$$
v_{1}=\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right), v_{2}=\left(\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right), \quad b=\left(\begin{array}{c}
8 \\
5 \\
-8
\end{array}\right)
$$

We want to find x_{1}, x_{2} such that $x_{1} v_{1}+x_{2} v_{2}=b$. This is a linear system, we can solve it using row reduction.

$$
\left(\begin{array}{rr|r}
1 & 2 & 8 \\
1 & 1 & 5 \\
-1 & -2 & -8
\end{array}\right) \xrightarrow[R_{3}=R_{3}+R_{1}]{R_{2}=R_{2}-R_{1}}\left(\begin{array}{rr|r}
1 & 2 & 8 \\
0 & -1 & -3 \\
0 & 0 & 0
\end{array}\right) \xrightarrow[R_{2}=-R_{2}]{R_{1}=R_{1}+2 R_{2}}\left(\begin{array}{ll|r}
1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right)
$$

This gives us $x_{1}=2, x_{2}=3$.

5. Solution.

a) $u=\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right), \quad v=\left(\begin{array}{c}3 \\ 3 / 2 \\ -3 / 2\end{array}\right)$. We find $v=\frac{3}{2} u$, which means u, v are on the same line. So the $\operatorname{Span}\{u, v\}$ must be a line.
b) It is nonlinear since there is a cross product term $x_{1} x_{2}$.

6. Solution.

Most of these questions can be converted to counting the number of pivots, and free variables.
a) A is a 3×3 matrix, and if $\left(A \mid b_{1}\right)$ has a unique solution, that means there is no free variable, and there are 3 pivots in the coefficient matrix A. So Every row and every column of A has exactly one pivot. Then for any b_{2}, the $\left(A \mid b_{2}\right)$ will exactly have only one solution.
b) Same as last part, A is 3×3, and if $\left(A \mid b_{1}\right)$ has a unique solution, that means there are 3 pivots in the coefficient matrix A. So every row and every column of A has exactly one pivot. for any b_{2}, the $\left(A \mid b_{2}\right)$ will exactly have only one solution.

7. Solution.

a) To be inconsistent, we need the two lines to be parallel. So we need the line $x-h y=10$ to have the same slope as the line $3 x+6 y=k$, which means we want $h=-2$. Then we need to make sure that the two lines are not the same line, so we want our constant term to be different. As long as $k \neq 30$, we have that $x+2 y=10$ and $3 x+6 y=k$ are two different parallel lines, and which makes this system inconsistent.
b) To have exactly one solution, all that matters is that the two lines are not parallel, so so long as $h \neq-2$, the two lines have different slopes and so must intersect at exactly one point.

8. Solution.

To check whether $\operatorname{Span}\{u, v, w\}=\mathbb{R}^{3}$, we could build a matrix with u, v, and w as columns and row reduce it to check whether it has three pivots. We would notice that it has only two pivots, and so the span is a plane and not all of \mathbb{R}^{3}. Alternatively, we could notice that $u+v=-w$, meaning that the set $\{u, v, w\}$ is linearly dependent, and the matrix will have a free variable. Since it would be a $3 x 3$ matrix, that means its column span is at most 2 -dimensional and not all of \mathbb{R}^{3}.

9. Solution.

a) The solution set of a homogeneous equation is always a span, which this isn't. To pick a concrete example, the vector $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ is always a solution to $A x=0$, when A is a $m \times 3$ matrix, but that vector is not in the proposed solution set.
b) The solution set of $A x=b$, when A is a $m \times 3$ matrix, must be a set of vectors in \mathbf{R}^{3}. Specifically, notice that $A x$, when A is a 4×3 matrix and x is 4×1 vector is not a legal multiplication.

10. Solution.

a) Let $x_{1}=c_{1}$ and $x_{2}=c_{2}$ be the unique solution we are promised to the equation $x_{1} v_{1}+x_{2} v_{2}=w$. If $\operatorname{Span}\left\{v_{1}, v_{2}\right\}$ isn't a plane, then the set $\left\{v_{1}, v_{2}\right\}$ is dependent, and there is a nontrivial solution to $x_{1} v_{1}+x_{2} v_{2}=0$, call that $x_{1}=a_{1}$ and $x_{2}=a_{2}$. Then we can simply add the two solutions together to get

$$
\left(c_{1}+a_{1}\right) v_{1}+\left(c_{2}+a_{2}\right) v_{2}=w
$$

a different solution to $x_{1} v_{1}+x_{2} v_{2}=w$. Since this is impossible, v_{1} and v_{2} must be independent, and so $\operatorname{Span}\left\{v_{1}, v_{2}\right\}$ must be a plane.
b) If $x_{1} v_{1}+x_{2} v_{2}=w$ has unique solution $x_{1}=c_{1}$ and $x_{2}=c_{2}$, then $c_{1} v_{1}+c_{2} v_{2}+$ $(-1) w=0$ is a nontrivial solution to $x_{1} v_{1}+x_{2} v_{2}+x_{3} w=0$, and so the set $\left\{v_{1}, v_{2}, w\right\}$ must be dependent.

11. Solution.

First notice that $\{u, 10 v, 3 u-4 v\}$ is linearly dependent, since $3 u-4 v=3 u+$ $-\frac{4}{10}(10 v)$, and so we only need to consider if $\operatorname{Span}\{u, v\}=\operatorname{Span}\{u, 10 v\}$. Then it is clear that any vector $c_{1} u+c_{2} v$ in $\operatorname{Span}\{u, v\}$ can be simply rewritten $c_{1} u+c_{2} v=$ $c_{1} u+\frac{c_{2}}{10}(10 v)$, and so is in $\operatorname{Span}\{u, 10 v\}$, and likewise any vector $d_{1} u+d_{2}(10 v)$ in $\operatorname{Span}\{u, 10 v\}$ can be rewritten $d_{1} u+d_{2}(10 v)=d_{1} u+\left(10 d_{2}\right) v$, and so is in $\operatorname{Span}\{u, v\}$.

12. Solution.

If b is in the column span of a matrix A, then by definition $A x=b$ is consistent. However, the difference between $A x=b$ having one solution and infinitely many depends on the number of free variables that A has. A matrix is only guaranteed free variables once we have more columns than rows, so we cannot say either way here.
13. a) A is a 4×5 matrix, so the solution set to $A x=0$ lives in \mathbf{R}^{5}. We are told A has 5 columns but only 4 pivots, so the augmented matrix $(A \mid 0)$ will have one column left of the augment bar without a pivot (i.e. one free variable). Therefore, the solution set is a line in \mathbf{R}^{5}.
b) A is a 4×5 matrix, so its column span lives in \mathbf{R}^{4}. Since we are told that A has 4 pivots, this means that A has a pivot in every row, so for every b in \mathbf{R}^{4}, the equation $A x=b$ is consistent. Since A has 5 columns but only 4 pivots, the (consistent) system $A x=b$ will have a free variable and therefore infinitely many solutions.
14. The blue line given to us is Span $\left\{\binom{1}{-2}\right\}$, and the matrices are

$$
A=\left(\begin{array}{cc}
-2 & 0 \\
4 & 0
\end{array}\right), \quad B=\left(\begin{array}{cc}
1 & -2 \\
1 & -2
\end{array}\right), \quad C=\left(\begin{array}{cc}
1 & 2 \\
-2 & -4
\end{array}\right) .
$$

We see A and C each have $\operatorname{Span}\left\{\binom{1}{-2}\right\}$ as their column span (this is the line $x_{2}=-2 x_{1}$ in \mathbf{R}^{2}), but B does not.
15. a) This is true. This T / F problem is just a rephrasing of the fact that if A is an $m \times n$ matrix with more columns than rows (i.e. a "wide" matrix), then the columns of A cannot be linearly independent.

If $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ is a linearly independent set of vectors in \mathbf{R}^{n}, then it must be true that $n \geq 5$. For example, if $n=4$ then this is a set of 5 vectors in \mathbf{R}^{4}, so it cannot be linearly independent.
b) This is false. The vector equation

$$
x_{1} w_{1}+\cdots+x_{p} w_{p}=0
$$

ALWAYS has the trivial solution $x_{1}=\cdots=x_{p}=0$. The vectors $\left\{w_{1}, \ldots, w_{p}\right\}$ are linearly independent when the trivial solution is the ONLY solution.
16. a) This is false. If the columns of an $m \times n$ matrix A are linearly dependent, then the matrix equation $A x=b$ might still be consistent for every b in \mathbf{R}^{m}. For example, take the 2×3 matrix from Quiz 3:

$$
A=\left(\begin{array}{ccc}
2 & -3 & -1 \\
0 & 0 & 5
\end{array}\right)
$$

The columns of A are linearly dependent, but A has a pivot in every row, so $A x=b$ is consistent for each b in \mathbf{R}^{2}.
b) This is true. If $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ are linearly independent vectors in \mathbf{R}^{4}, then the 4×4 matrix A whose columns are u_{1} through u_{4} will have 4 pivots and therefore a pivot in every row, so u_{1} through u_{4} must span all of \mathbf{R}^{4}.
17.
a) $A u=\binom{4}{1}$ and $A v=\binom{1}{0}$, so

$$
A(3 u-2 v)=3 A u-2 A v=\binom{12}{3}-\binom{2}{0}=\binom{10}{3}
$$

b) Yes. Here $u=\binom{1}{0}$ and $v=\binom{-3}{1}$, so for any b in \mathbf{R}^{2}, the vector equation $x_{1} u+x_{2} v=b$ corresponds to the augmented matrix $\left(\begin{array}{rr|r}1 & -3 & (*)_{1} \\ 0 & 1 & (*)_{2}\end{array}\right)$. We see from the pivots that this system is consistent and has a unique solution.
18. Suppose A is a 3×4 matrix and b is some vector so that the solution set for the matrix equation $A x=b$ has parametric vector form

$$
\left(\begin{array}{l}
4 \\
0 \\
1 \\
0
\end{array}\right)+x_{2}\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
-4 \\
0 \\
-2 \\
1
\end{array}\right)
$$

where x_{2} and x_{4} can be any real numbers.
This problem uses the fact that the solution set for $A x=b$ is the translation of the solution set of $A x=0$. In the parametric vector form, the term with no free variable is a particular solution p (where $A p=b$) and the terms with the free variables give the homogeneous solutions $(A x=0)$.
a) Yes, it is true that $A\left(\begin{array}{l}4 \\ 0 \\ 1 \\ 0\end{array}\right)=b$. We know this already from the reasoning above, but we could see it directly by noting that when $x_{2}=0$ and $x_{4}=0$, the solution to $A x=b$ that we get is just $\left(\begin{array}{l}4 \\ 0 \\ 1 \\ 0\end{array}\right)$.
b) Yes, it is true that $A\left(\begin{array}{c}-4 \\ 0 \\ -2 \\ 1\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$. From the parametric vector form above, we see that in fact $\left(\begin{array}{c}-4 \\ 0 \\ -2 \\ 1\end{array}\right)$ was given to us as one of the vectors in the spanning set for the homogeneous solutions.
19. We need to write a matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

that satisfies both the following properties:
(1) The span of the columns of A is the line $x_{1}=2 x_{2}$.
(2) The set of solutions to the equation $A x=0$ is $\operatorname{Span}\left\{\binom{3}{1}\right\}$

Solution:
(1) The column span consists of all vectors of the form

$$
\binom{x_{1}}{x_{2}}=\binom{2 x_{2}}{x_{2}}=x_{2}\binom{2}{1}, \text { namely } \operatorname{Span}\left\{\binom{2}{1}\right\} .
$$

Therefore, each column of A should be a scalar multiple of $\binom{2}{1}$.
(2) The span of $\binom{3}{1}$ is all vectors where $x_{1}=3 x_{2}$, which gives us the equation $x_{1}-3 x_{2}=0$, whose augmented form is $\left(\begin{array}{ll}1 & -3 \mid 0\end{array}\right)$. From this, we see the second column of A should be -3 times the first column.
Putting these together, we could write

$$
A=\left(\begin{array}{ll}
2 & -6 \\
1 & -3
\end{array}\right) .
$$

For this A, we have
$a=2$,
$b=-6$,
$c=1$,
$d=-3$.
There are other possibilities for A, for example

$$
A=\left(\begin{array}{cc}
4 & -12 \\
2 & -6
\end{array}\right), \quad A=\left(\begin{array}{cc}
-2 & 6 \\
-1 & 3
\end{array}\right), \quad \text { etc. }
$$

