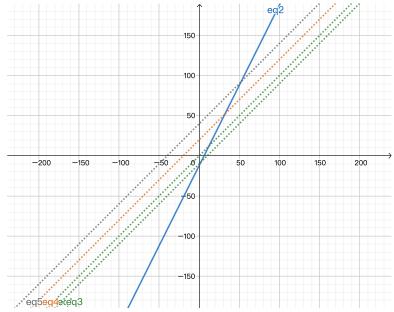
Math 1553 midterm exam 1 Solutions

1. Solution.

a) $\begin{pmatrix} 1 & 0 & 2 & | & 0 \\ 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$ is not in RREF, since 2 is above the pivot which is not zero. **b)** $\begin{pmatrix} 1 & 0 & 0 & 5 & | & -7 \\ 0 & 1 & 0 & 0 & | & 2 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}$. There are two pivots, and there are two free variables x_{3}, x_{4} .

2. Solution.

- a) If an augmented matrix has a pivot in every column, then the pivot in the last column (on the right of the vertical bar) has a pivot. That implies the linear system is inconsistent.
- **b)** The two lines in \mathbb{R}^2 : x y = c and 2x y = 12 have different slopes. So they will intersect no matter what the intercept *c* is. From linear system point of view, we need to have a consistent linear system to have the two lines intersect. One can write down augmented matrix, $\begin{pmatrix} 1 & -1 & c \\ 2 & -1 & 12 \end{pmatrix}$, and do row reduction find REF to be $\begin{pmatrix} 1 & -1 & c \\ 0 & 1 & 12 - 2c \end{pmatrix}$ which is consistent for any *c*. Here is an online graph you can play with https://www.geogebra.org/graphing/qapz8jts



3. Solution.

a) The last row of $\begin{pmatrix} 1 & -1 & 0 & | & 1 \\ 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & | & 2 \end{pmatrix}$ is $\begin{pmatrix} 0 & 0 & 0 & | & 2 \end{pmatrix}$, which yields a contradic-

tion.

b) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ is consistent and have no free variables. So the linear sys-

tem has a unique solution $x_1 = 0, x_2 = 0, x_3 = -2$.

4. Solution.

$$v_1 = \begin{pmatrix} 1\\1\\-1 \end{pmatrix}, v_2 = \begin{pmatrix} 2\\1\\-2 \end{pmatrix}, \quad b = \begin{pmatrix} 8\\5\\-8 \end{pmatrix}$$

We want to find x_1, x_2 such that $x_1v_1 + x_2v_2 = b$. This is a linear system, we can solve it using row reduction.

$$\begin{pmatrix} 1 & 2 & 8 \\ 1 & 1 & 5 \\ -1 & -2 & -8 \end{pmatrix} \xrightarrow{R_2 = R_2 - R_1} \begin{pmatrix} 1 & 2 & 8 \\ 0 & -1 & -3 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_1 = R_1 + 2R_2} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{pmatrix}$$

This gives us $x_1 = 2, x_2 = 3$.

5. Solution.

a)
$$u = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$
, $v = \begin{pmatrix} 3 \\ 3/2 \\ -3/2 \end{pmatrix}$. We find $v = \frac{3}{2}u$, which means u, v are on the same line.

same line. So the Span $\{u, v\}$ must be a line.

b) It is nonlinear since there is a cross product term x_1x_2 .

6. Solution.

Most of these questions can be converted to counting the number of pivots, and free variables.

- **a)** A is a 3 \times 3 matrix, and if $(A \mid b_1)$ has a unique solution, that means there is no free variable, and there are 3 pivots in the coefficient matrix A. So Every row and every column of A has exactly one pivot. Then for any b_2 , the $(A \mid b_2)$ will exactly have only one solution.
- **b)** Same as last part, A is 3×3 , and if $(A \mid b_1)$ has a unique solution, that means there are 3 pivots in the coefficient matrix A. So every row and every column of A has exactly one pivot. for any b_2 , the $(A \mid b_2)$ will exactly have only one solution.

7. Solution.

- a) To be inconsistent, we need the two lines to be parallel. So we need the line x hy = 10 to have the same slope as the line 3x + 6y = k, which means we want h = -2. Then we need to make sure that the two lines are not the *same* line, so we want our constant term to be different. As long as $k \neq 30$, we have that x + 2y = 10 and 3x + 6y = k are two different parallel lines, and which makes this system inconsistent.
- **b)** To have exactly one solution, all that matters is that the two lines are *not* parallel, so so long as $h \neq -2$, the two lines have different slopes and so must intersect at exactly one point.

8. Solution.

To check whether $\text{Span}\{u, v, w\} = \mathbb{R}^3$, we could build a matrix with u, v, and w as columns and row reduce it to check whether it has three pivots. We would notice that it has only two pivots, and so the span is a plane and not all of \mathbb{R}^3 . Alternatively, we could notice that u + v = -w, meaning that the set $\{u, v, w\}$ is linearly dependent, and the matrix will have a free variable. Since it would be a 3x3 matrix, that means its column span is at most 2-dimensional and not all of \mathbb{R}^3 .

9. Solution.

То

a) The solution set of a homogeneous equation is always a span, which this isn't.

	0	
pick a concrete example, the vector	0	is always a solution to $Ax = 0$,
	۲۰٦	

when A is a $m \times 3$ matrix, but that vector is not in the proposed solution set.

b) The solution set of Ax = b, when *A* is a $m \times 3$ matrix, must be a set of vectors in \mathbb{R}^3 . Specifically, notice that Ax, when *A* is a 4×3 matrix and *x* is 4×1 vector is not a legal multiplication.

10. Solution.

a) Let $x_1 = c_1$ and $x_2 = c_2$ be the unique solution we are promised to the equation $x_1v_1 + x_2v_2 = w$. If Span $\{v_1, v_2\}$ isn't a plane, then the set $\{v_1, v_2\}$ is dependent, and there is a nontrivial solution to $x_1v_1 + x_2v_2 = 0$, call that $x_1 = a_1$ and $x_2 = a_2$. Then we can simply add the two solutions together to get

$$(c_1 + a_1)v_1 + (c_2 + a_2)v_2 = w,$$

a different solution to $x_1v_1 + x_2v_2 = w$. Since this is impossible, v_1 and v_2 must be independent, and so Span $\{v_1, v_2\}$ must be a plane.

b) If $x_1v_1 + x_2v_2 = w$ has unique solution $x_1 = c_1$ and $x_2 = c_2$, then $c_1v_1 + c_2v_2 + (-1)w = 0$ is a nontrivial solution to $x_1v_1 + x_2v_2 + x_3w = 0$, and so the set $\{v_1, v_2, w\}$ must be dependent.

11. Solution.

First notice that $\{u, 10v, 3u - 4v\}$ is linearly dependent, since $3u - 4v = 3u + -\frac{4}{10}(10v)$, and so we only need to consider if $\text{Span}\{u, v\} = \text{Span}\{u, 10v\}$. Then it is clear that any vector $c_1u + c_2v$ in $\text{Span}\{u, v\}$ can be simply rewritten $c_1u + c_2v = c_1u + \frac{c_2}{10}(10v)$, and so is in $\text{Span}\{u, 10v\}$, and likewise any vector $d_1u + d_2(10v)$ in $\text{Span}\{u, 10v\}$ can be rewritten $d_1u + d_2(10v) = d_1u + (10d_2)v$, and so is in $\text{Span}\{u, v\}$.

12. Solution.

If *b* is in the column span of a matrix *A*, then by definition Ax = b is consistent. However, the difference between Ax = b having one solution and infinitely many depends on the number of free variables that *A* has. A matrix is only guaranteed free variables once we have more columns than rows, so we cannot say either way here.

- **13.** a) *A* is a 4×5 matrix, so the solution set to Ax = 0 lives in \mathbb{R}^5 . We are told *A* has 5 columns but only 4 pivots, so the augmented matrix $(A \mid 0)$ will have one column left of the augment bar without a pivot (i.e. one free variable). Therefore, the solution set is a line in \mathbb{R}^5 .
 - **b)** A is a 4×5 matrix, so its column span lives in \mathbb{R}^4 . Since we are told that A has 4 pivots, this means that A has a pivot in every row, so for every b in \mathbb{R}^4 , the equation Ax = b is consistent. Since A has 5 columns but only 4 pivots, the (consistent) system Ax = b will have a free variable and therefore infinitely many solutions.

14. The blue line given to us is Span
$$\left\{ \begin{pmatrix} 1 \\ -2 \end{pmatrix} \right\}$$
, and the matrices are $A = \begin{pmatrix} -2 & 0 \\ 4 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -2 \\ 1 & -2 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 2 \\ -2 & -4 \end{pmatrix}$.

We see *A* and *C* each have Span $\left\{ \begin{pmatrix} 1 \\ -2 \end{pmatrix} \right\}$ as their column span (this is the line $x_2 = -2x_1$ in \mathbb{R}^2), but *B* does not.

15. a) This is true. This T/F problem is just a rephrasing of the fact that if *A* is an $m \times n$ matrix with more columns than rows (i.e. a "wide" matrix), then the columns of *A* cannot be linearly independent.

If $\{v_1, v_2, v_3, v_4, v_5\}$ is a linearly independent set of vectors in \mathbb{R}^n , then it must be true that $n \ge 5$. For example, if n = 4 then this is a set of 5 vectors in \mathbb{R}^4 , so it cannot be linearly independent.

b) This is false. The vector equation

$$x_1w_1 + \dots + x_pw_p = 0$$

ALWAYS has the trivial solution $x_1 = \cdots = x_p = 0$. The vectors $\{w_1, \ldots, w_p\}$ are linearly independent when the trivial solution is the ONLY solution.

16. a) This is false. If the columns of an $m \times n$ matrix *A* are linearly dependent, then the matrix equation Ax = b might still be consistent for every *b* in \mathbb{R}^m . For example, take the 2 × 3 matrix from Quiz 3:

$$A = \begin{pmatrix} 2 & -3 & -1 \\ 0 & 0 & 5 \end{pmatrix}.$$

The columns of *A* are linearly dependent, but *A* has a pivot in every row, so Ax = b is consistent for each *b* in \mathbb{R}^2 .

b) This is true. If $\{u_1, u_2, u_3, u_4\}$ are linearly independent vectors in \mathbb{R}^4 , then the 4×4 matrix *A* whose columns are u_1 through u_4 will have 4 pivots and therefore a pivot in every row, so u_1 through u_4 must span all of \mathbb{R}^4 .

17. a)
$$Au = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$
 and $Av = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, so

$$A(3u-2v) = 3Au - 2Av = \binom{12}{3} - \binom{2}{0} = \binom{10}{3}.$$

b) Yes. Here $u = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $v = \begin{pmatrix} -3 \\ 1 \end{pmatrix}$, so for any *b* in \mathbb{R}^2 , the vector equation $x_1u + x_2v = b$ corresponds to the augmented matrix $\begin{pmatrix} 1 & -3 & | & (*)_1 \\ 0 & 1 & | & (*)_2 \end{pmatrix}$. We see from the pivots that this system is consistent and has a unique solution.

18. Suppose *A* is a 3×4 matrix and *b* is some vector so that the solution set for the matrix equation Ax = b has parametric vector form

$$\begin{pmatrix} 4\\0\\1\\0 \end{pmatrix} + x_2 \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} + x_4 \begin{pmatrix} -4\\0\\-2\\1 \end{pmatrix},$$

where x_2 and x_4 can be any real numbers.

This problem uses the fact that the solution set for Ax = b is the translation of the solution set of Ax = 0. In the parametric vector form, the term with no free variable is a particular solution p (where Ap = b) and the terms with the free variables give the homogeneous solutions (Ax = 0).

a) Yes, it is true that $A\begin{pmatrix} 4\\0\\1\\0 \end{pmatrix} = b$. We know this already from the reasoning above, but we could see it directly by noting that when $x_2 = 0$ and $x_4 = 0$, the solution to Ax = b that we get is just $\begin{pmatrix} 4\\0\\1\\0 \end{pmatrix}$. b) Yes, it is true that $A\begin{pmatrix} -4\\0\\-2\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$. From the parametric vector form above, we see that in fact $\begin{pmatrix} -4\\0\\-2\\1 \end{pmatrix}$ was given to us as one of the vectors in the spanning set for the homogeneous solutions.

19. We need to write a matrix

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

that satisfies both the following properties:

- (1) The span of the columns of *A* is the line $x_1 = 2x_2$.
- (2) The set of solutions to the equation Ax = 0 is Span $\left\{ \begin{pmatrix} 3 \\ 1 \end{pmatrix} \right\}$

Solution:

(1) The column span consists of all vectors of the form

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2x_2 \\ x_2 \end{pmatrix} = x_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \text{ namely Span} \left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}.$$

Therefore, each column of A should be a scalar multiple of $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

(2) The span of $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$ is all vectors where $x_1 = 3x_2$, which gives us the equation $x_1 = 3x_2 = 0$, whose sugmented form is $\begin{pmatrix} 1 & -3 & 0 \end{pmatrix}$. From this, we see the

 $x_1 - 3x_2 = 0$, whose augmented form is $\begin{pmatrix} 1 & -3 & | & 0 \end{pmatrix}$. From this, we see the second column of *A* should be -3 times the first column.

Putting these together, we could write

$$A = \begin{pmatrix} 2 & -6 \\ 1 & -3 \end{pmatrix}.$$

For this *A*, we have a = 2, b = -6,

 $c = 1, \\ d = -3.$

There are other possibilities for *A*, for example

$$A = \begin{pmatrix} 4 & -12 \\ 2 & -6 \end{pmatrix}, \quad A = \begin{pmatrix} -2 & 6 \\ -1 & 3 \end{pmatrix}, \quad \text{etc..}$$