Math 1553 Reading Day Problem Set

Spring 2021

Problem #1 would be the honor code, so when the problems begin on the next page, the first will be numbered #2.

If $\{u, v, w\}$ is a set of linearly dependent vectors, then w must be a linear combination of u and v.

- True
- False

Question 3 1 pts

Find the value of k that makes the following vectors linearly dependent:

$$\begin{pmatrix} -3 \\ 0 \\ 3 \end{pmatrix}$$
 , $\begin{pmatrix} 3 \\ -3 \\ k \end{pmatrix}$, $\begin{pmatrix} 3 \\ -1 \\ -1 \end{pmatrix}$

Question 4 1 pts

If $\{u,v\}$ is a basis for a subspace W, then $\{u-v,u+v\}$ is also a basis for W.

- True
- False

Question 5 1 pts

Which of the following are subspaces of \mathbb{R}^4 ?

(1) The set
$$W = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \text{ in } \mathbb{R}^4 \ : \ 2x - y - z = 0
ight\}.$$

- (2) The set of solutions to the equation $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 3 & 0 & -1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
- (2) is a subspace but (1) is not a subspace
- both are subspaces
- neither is a subspace
- (1) is a subspace but (2) is not a subspace

Question 6 1 pts

Let W be the set of vectors $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ in \mathbb{R}^3 with abc=0. Then W is closed under addition, meaning that if v and w are in W, then v+w is in W.

- True
- False

Question 7 1 pts

Match the transformations given below with their corresponding 2×2 matrix.

A.
$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

- B. $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$
- C. $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$
- D. $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- E. $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Counter-clockwise rotation by 90 degrees	[Choose]	•
Reflection about the line y=x	[Choose]	\$
Clockwise rotation by 90 degrees	[Choose]	\$
Reflection across the x-axis	[Choose]	\$
Reflection across the y-axis	[Choose]	\$

Question 8	1 pts
Find the value of k so that the matrix transformation for the following matrix is onto.	not
$\begin{pmatrix}1&3&9\\2&6&k\end{pmatrix}$	

4/26/2020 Quiz: Final Exam

Question 9 1 pts

Find the **nonzero** value of k that makes the following matrix not invertible.

$$\left(egin{array}{ccc} 1 & -1 & 0 \ k & k^2 & 0 \ -1 & 1 & 5 \end{array}
ight)$$

Enter an integer as your answer. Note that 0 is not the correct answer, since the question asks for a nonzero value of k.

Question 10 1 pts

Match the following definitions with the corresponding term describing a linear transformation $T: \mathbb{R}^m \to \mathbb{R}^n$.

Each definition should be used exactly once.

- A. For each y in \mathbb{R}^n there is at most one x in \mathbb{R}^m so that T(x)=y.
- B. For each y in \mathbb{R}^n there is at least one x in \mathbb{R}^m so that T(x)=y.
- C. For each y in \mathbb{R}^n there is exactly one x in \mathbb{R}^m so that T(x)=y.
- D. For each x in \mathbb{R}^m there is exactly one y in \mathbb{R}^n so that T(x) = y.

T is a transformation	[Choose]	•
T is one-to-one	[Choose]	\$
T is onto	[Choose]	\$

T is one-to-one and onto

[Choose]

Question 11	1 pts
Suppose $m{A}$ is a $m{4} imes m{6}$ matrix. Then the dimension of the null space of $m{A}$ is at	most 2.
○ True	
○ False	

Question 12 1 pts

Complete the entries of the matrix A so that $\operatorname{Col}(A) = \operatorname{Span}\left\{inom{1}{2}\right\}$ and

$$\operatorname{Nul}(A) = \operatorname{Span}\left\{ inom{1}{1}
ight\}$$
 .

$$egin{aligned} A = egin{pmatrix} r & 1 \ s & 2 \end{pmatrix}$$
 , where $m{r}$ = $egin{bmatrix} r & 1 \ s & 2 \end{pmatrix}$

Question 13 1 pts

Suppose $T: \mathbb{R}^7 \to \mathbb{R}^9$ is a linear transformation with standard matrix A, and suppose that the range of T has a basis consisting of 3 vectors. What is the dimension of the null space of A?

Suppose that A is a 7×5 matrix, and the null space of A is a line. Say that T is the matrix transformation T(v) = Av. Which of the following statements must be true about the range of T?

It is a 6-dimensional subspace of \mathbb{R}^7 It is a 4-dimensional subspace of \mathbb{R}^5 It is a 6-dimensional subspace of \mathbb{R}^5

Question 16 1 pts Say that $S:\mathbb{R}^2 \to \mathbb{R}^3$ and $T:\mathbb{R}^3 \to \mathbb{R}^4$ are linear transformations. Which of the following must be true about $T\circ S$?

The composition	is not defined		
○ It is one-to-one			
It is not one-to-or	e		
O It is onto			

Question 17 1 pts Suppose that A is an invertible $n \times n$ matrix. Then A + A must be invertible. True False

Question 18	1 pts
Suppose A is a $3 imes3$ matrix and the equation $Ax=\begin{pmatrix}-1\\3\\2\end{pmatrix}$ has exactly one solution. Then A must be invertible.)
○ True	
○ False	

Question 19 1 pts

Suppose that $\emph{\textbf{A}}$ and $\emph{\textbf{B}}$ are $\emph{\textbf{n}}$ \times $\emph{\textbf{n}}$ matrices and $\emph{\textbf{A}}\emph{\textbf{B}}$ is not invertible.

Which one of of the following statements must be true?

B is not invertible	
None of these	
A is not invertible	

Question 20

1 pts

Suppose A and B are 3×3 matrices, with $\det(A) = 3$ and $\det(B) = -6$. Find $\det(2A^{-1}B)$.

Question 21 1 pts

Let A be the 3×3 matrix satisfying $Ae_1=e_3$, $Ae_2=e_2$, and $Ae_3=2e_1$ (recall that we use e_1 , e_2 , and e_3 to denote the standard basis vectors for \mathbb{R}^3).

Find $\det(A)$.

Question 22 1 pts

Suppose A is a square matrix and $\lambda = -1$ is an eigenvalue of A.

Which one of the following statements must be true?

 \bigcirc The columns of A+I are linearly independent.

- igcup The equation Ax=x has only the trivial solution.
- \bigcirc \boldsymbol{A} is invertible.
- igcap For some nonzero $m{x}$, the vectors $m{A}m{x}$ and $m{x}$ are linearly dependent.
- \bigcirc Nul $(A+I)=\{0\}$

Question 23

1 pts

Suppose A is a 4 x 4 matrix with characteristic polynomial $-(1-\lambda)^2(5-\lambda)\lambda$.

What is the rank of A?

Question 24

1 pts

Let $T:\mathbb{R}^2 o\mathbb{R}^2$ be the transformation that reflects across the line $x_2=2x_1$.

Find the value of k so that $A \begin{pmatrix} 2 \\ k \end{pmatrix} = \begin{pmatrix} 2 \\ k \end{pmatrix}$.

Question 25

1 pts

Find the value of \pmb{k} such that the matrix $egin{pmatrix} 1 & k \\ 1 & 3 \end{pmatrix}$ is not diagonalizable. *Enter an integer value below.*

Question 26 1 pts

Suppose that A is a 5×5 matrix with characteristic polynomial $(1-\lambda)^3(2-\lambda)(3-\lambda)$ and also that \emph{A} is diagonalizable. What is the dimension of the 1-eigenspace of A?

Question 27 1 pts

Find the value of t such that 3 is an eigenvalue of $\begin{pmatrix} 1 & t & 3 \\ 1 & 1 & 1 \\ 3 & 0 & 3 \end{pmatrix}$. *Enter an integer* answer below.

Question 28 1 pts

Say that A is a 2×2 matrix with characteristic polynomial $(1 - \lambda)(2 - \lambda)$. What is the characteristic polynomial of A^2 ?

$$egin{aligned} \bigcirc \ (1-\lambda^2)(4-\lambda^2) \ \hline \bigcirc \ (1-\lambda)(4-\lambda) \end{aligned}$$

$$\bigcirc (1-\lambda)(4-\lambda)$$

- $egin{array}{c} \bigcirc \ (1-\lambda^2)(2-\lambda^2) \ \hline \bigcirc \ (1-\lambda)(2-\lambda) \end{array}$
- $\bigcirc \ (1-\lambda)^2(2-\lambda)^2$

Question 29 1 pts

Suppose that a vector x is an eigenvector of A with eigenvalue 3 and that x is also an eigenvector of **B** with eigenvalue 4. Which of the following is true about the matrix 2A - B and x:

- None of these
- $m{x}$ is an eigenvector of $m{2A}-m{B}$ with eigenvalue 2
- igcap x is an eigenvector of ${f 2A}-{f B}$ with eigenvalue 3
- $\bigcirc x$ is an eigenvector of 2A-B with eigenvalue 1
- igcap x is an eigenvector of 2A-B with eigenvalue 4

Question 30 1 pts

Suppose that A is a 4×4 matrix with eigenvalues 0, 1, and 2, where the eigenvalue 1 has algebraic multiplicity two.

Which of the following must be true?

- (1) \boldsymbol{A} is not diagonalizable
- (2) A is not invertible
- Both (1) and (2) must be true
- Neither statement is necessarily true
- (1) must be true but (2) might not be true

(2) must be true but (1) might not be true

Question 31

1 pts

Suppose ${\it A}$ is a 5 \times 5 matrix whose entries are real numbers. Then ${\it A}$ must have at least one real eigenvalue.

- True
- False

Question 32

1 pts

Suppose A is a positive stochastic matrix and $Aigg(\frac{3/5}{2/5}igg)=igg(\frac{3/5}{2/5}igg)$. Let $v=igg(\frac{5}{2/5}igg)$.

As n gets very large, A^nv approaches the vector $inom{r}{s}$, where:

$$r=$$
 and $s=$

Question 33

1 pts

Suppose that A is a 4×4 matrix of rank 2. Which one of the following statements must be true?

- none of these
- igcap A is not diagonalizable

igcap A must have four distinct eigenva	lues
---	------

- A is diagonalizable
- $oldsymbol{A}$ cannot have four distinct eigenvalues

Question 34

1 pts

Suppose A is a 2×2 matrix whose entries are real numbers, and suppose A has eigenvalue 1+i with corresponding eigenvector $\begin{pmatrix} 2 \\ 1+i \end{pmatrix}$.

Which of the following must be true?

- $igcap_{A}$ must have eigenvalue 1-i with corresponding eigenvector $egin{pmatrix} 2 \ 1+i \end{pmatrix}$
- $igcap_A$ must have eigenvalue 1+i with corresponding eigenvector $egin{pmatrix} 2 \ 1-i \end{pmatrix}$
- $igcap_{m{A}}$ must have eigenvalue 1-i with corresponding eigenvector $egin{pmatrix} 2 \ 1-i \end{pmatrix}$
- None of these

Question 35

1 pts

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that rotates the plane clockwise by 45 degrees, and let A be the standard matrix for T.

Which one of the following statements is true?

- igcup A has one complex eigenvalue with algebraic multiplicity two
- \bigcirc **A** has one real eigenvalue with algebraic multiplicity two
- igcap A has two distinct real eigenvalues

$\supset \pmb{A}$ has two distinct complex eigenvalues								
A has two distinct complex eldenvalues	4	L	4	4:4:4:4		-1	-:	
	7	nae	TWA	aigninat	com	niev.	einenv	/allies
	\boldsymbol{A}	Has	LVV	distillet	COLLIN		CIGCIII	aiucs.

0	uestion	36
u	uestion	30

1 pts

Suppose ${\it u}$ and ${\it v}$ are orthogonal unit vectors (to say that a vector is a unit vector means that it has length 1). Find the dot product

$$(3u-8v)\cdot 4u$$

Question 37

1 pts

Find the value of k that makes the following pair of vectors orthogonal.

$$\begin{pmatrix} 2 \\ k \\ 1 \end{pmatrix}$$
 and $\begin{pmatrix} k \\ 1 \\ -6 \end{pmatrix}$

Your answer should be an integer.

Question 38

1 pts

If W is a subspace of \mathbb{R}^{100} and v is a vector in W^{\perp} then the orthogonal projection of v to W must be the v0 vector.

T
1 11 14

False

Question 39	1 pts
Suppose W is a subspace of \mathbb{R}^n . If x is a vector and x_W is the orthogona of x onto W , then $x \cdot x_W$ must be 0.	I projection
○ True	
○ False	

Question 40	1 pts
Suppose that A is a $3 imes 3$ invertible matrix. What is the dot product between the second row of A and third column of A^{-1} equal to?	ne
<u> </u>	
○ 2	
Not Enough Information is Given	
○ -2	
O 0	

Question 41 1 pts

Find the orthogonal projection of $\binom{0}{1}$ onto $\operatorname{Span}\left\{\binom{1}{2}\right\}$.

The orthogonal projection is $\begin{pmatrix} a \\ b \end{pmatrix}$, where: $a = \begin{bmatrix} a \\ b \end{bmatrix}$ and $b = \begin{bmatrix} a \\ b \end{bmatrix}$

-

Enter integers or fractions as your entries.

Question 42

1 pts

Compute the orthogonal projection of the vector $egin{pmatrix} 6 \\ 5 \\ 4 \end{pmatrix}$ to the plane spanned by the

vectors $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$. What is the first coordinate of the projection? Your answer should be an integer.

Question 43 1 pts

Suppose B is the standard matrix for the transformation $T:\mathbb{R}^3 \to \mathbb{R}^3$ of orthogonal projection onto the subspace $W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ in } \mathbb{R}^3 \ \middle| \ x+y+2z = 0 \right\}$.

What is the dimension of the 1-eigenspace of B?

1 pts

Question 44

Let W be the subspace of \mathbb{R}^4 given by all vectors $egin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}$ such that

x-y+z+w=0. Find dimension of the orthogonal complement W^{\perp} .

Question 45 If b is in the column space of the matrix A then every solution to Ax = b is a least squares solution. True False

Question 46	1 pts
If A is an $m \times n$ matrix, b is in \mathbb{R}^m , and \hat{x} is a least squares solution to $Ax =$ then \hat{x} is the point in $\mathrm{Col}(A)$ that is closest to b .	$oldsymbol{b}_{\gamma}$
○ True	
○ False	

Question 47 1 pts

Find the least squares solution \hat{x} to the linear system

$$egin{pmatrix} 6 \ -2 \ -2 \end{pmatrix} x = egin{pmatrix} 14 \ -2 \ 0 \end{pmatrix}$$
 .

If your answer is an integer, enter an integer.

If your answer is not an integer, enter a fraction.

Question 48	1 pts
Question 40	i ptc

Find the best fit line y= x+ for the data points

(-7, -22), (0, -2), and (7, 6) using the method of least squares. Your answers should both be integers.

Question 49 1 pts

Let
$$A = \begin{pmatrix} 4 & 1 \\ 5 & 2 \end{pmatrix} \begin{pmatrix} -3 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 4 & 1 \\ 5 & 2 \end{pmatrix}^{-1}.$$

Find r and s so that $A^3 \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} r \\ s \end{pmatrix}$.

$$r =$$

4/26/2020 Quiz: Final Exam

Question 50	1 pts
If $m{A}$ is a diagonalizable $m{6} imes m{6}$ matrix, then $m{A}$ has $m{6}$ distinct eigenvalues.	
○ True	
○ False	

1	pt	S
	1	1 pt

Find the eigenvalues of the matrix $A=\begin{pmatrix}1&4\\4&7\end{pmatrix}$ and write them in increasing order.

The smaller eigenvalue is λ_1 =

The larger eigenvalue is λ_2 =

Not saved

Submit Quiz