Math 1553 Worksheet: Fundamentals and §1.1

- 1. a) (Warm-up) Draw the set of all points in \mathbb{R}^2 that satisfy the equation x y = 0, where we use (x, y) to denote points in \mathbb{R}^2 .
 - **b)** Draw the set of all points in \mathbb{R}^3 that satisfy the equation x y = 0, where we use (x, y, z) to denote points in \mathbb{R}^3 . Geometrically, does this set form a line, a plane, or something else?

- **2.** Richard Straker has eight light switches in order along a wall. He records which lights are on and which lights are off. To save time, he uses 0 to represent "off" and using 1 to represent "on" for each light.
 - a) Write an element of Rⁿ (for some n) that represents the situation when all the lights are on. What is n?

b) Repeat part (a) when all lights are off.

3. a) (Warm-up) In how many ways can two lines in the *xy*-plane intersect? Draw a quick picture for each case.

b) Is it possible for two planes in **R**³ to intersect in a line? If so, draw an example. Can you write a system of two equations that represents this?

c) Is it possible for the intersection of two planes in **R**³ to consist of exactly one point? If so, draw an example. Can you write a system of two equations that represents this?

d) Is it possible for the intersection of three planes in **R**³ to be exactly one point? If so, draw an example. Can you write a system of three equations that represents this?

4. For each equation, determine whether the equation is linear or non-linear. Circle your answer. If the equation is non-linear, briefly justify why it is non-linear.

a) $3x_1 + \sqrt{x_2} = 4$ Linear Not linear

b) $x^2 + y = z$ Linear Not linear

c) $e^{\pi}x + \ln(13)y = \sqrt{2} - z$ Linear Not linear