Math 1553 Worksheet: Fundamentals and §1.1

1. a) (Warm-up) Draw the set of all points in \mathbf{R}^{2} that satisfy the equation $x-y=0$, where we use (x, y) to denote points in \mathbf{R}^{2}.
b) Draw the set of all points in \mathbf{R}^{3} that satisfy the equation $x-y=0$, where we use (x, y, z) to denote points in \mathbf{R}^{3}. Geometrically, does this set form a line, a plane, or something else?
2. Richard Straker has eight light switches in order along a wall. He records which lights are on and which lights are off. To save time, he uses 0 to represent "off" and using 1 to represent "on" for each light.
a) Write an element of \mathbf{R}^{n} (for some n) that represents the situation when all the lights are on. What is n ?
b) Repeat part (a) when all lights are off.
3. a) (Warm-up) In how many ways can two lines in the $x y$-plane intersect? Draw a quick picture for each case.
b) Is it possible for two planes in \mathbf{R}^{3} to intersect in a line? If so, draw an example. Can you write a system of two equations that represents this?
c) Is it possible for the intersection of two planes in \mathbf{R}^{3} to consist of exactly one point? If so, draw an example. Can you write a system of two equations that represents this?
d) Is it possible for the intersection of three planes in \mathbf{R}^{3} to be exactly one point? If so, draw an example. Can you write a system of three equations that represents this?
4. For each equation, determine whether the equation is linear or non-linear. Circle your answer. If the equation is non-linear, briefly justify why it is non-linear.
a) $3 x_{1}+\sqrt{x_{2}}=4$
Linear
Not linear
b) $x^{2}+y=z \quad$ Linear Not linear
c) $e^{\pi} x+\ln (13) y=\sqrt{2}-z \quad$ Linear \quad Not linear
